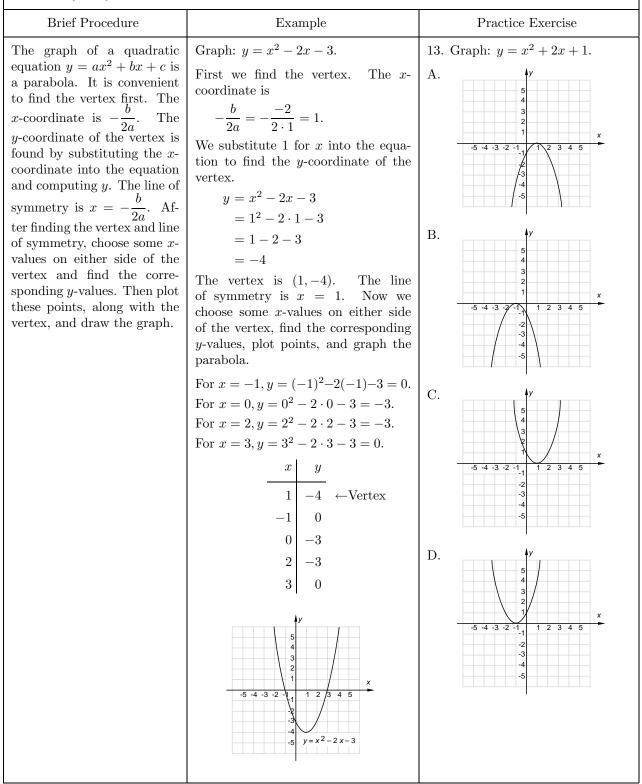
Developmental Mathematics Chapter 16 Review

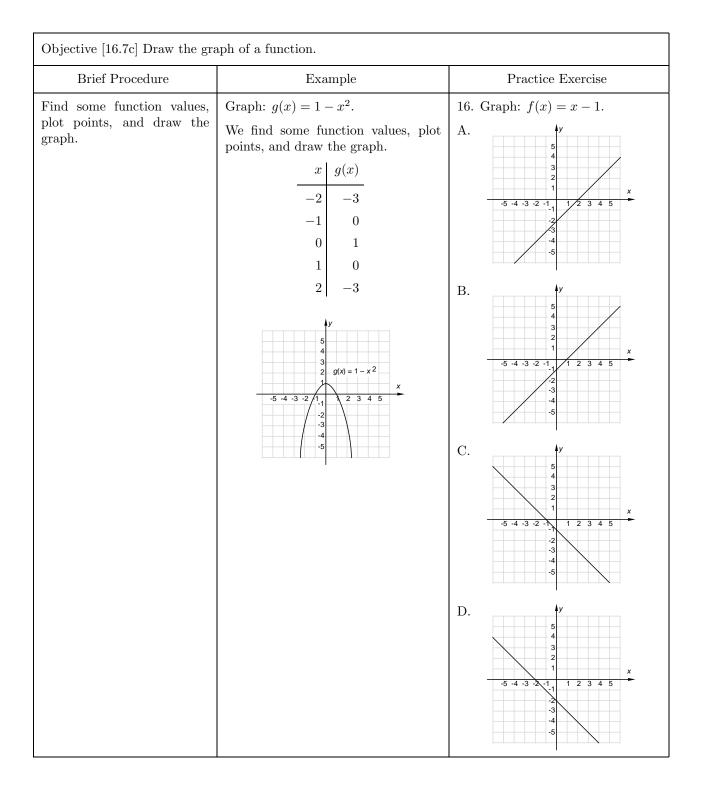
	fratic equation in standard form $ax^2 + b$ ats a, b , and c .	$bx + c = 0, \ a > 0$, and determine
Brief Procedure	Example	Practice Exercise
Given an quadratic equation, use the addition and multipli- cation principles to write an equivalent equation in stan- dard form, $ax^2 + bx + c = 0$, a > 0.	Write $-2x^2+3x = 5$ in standard form and determine $a, b, and c$. First we subtract 5 on both sides of the equation. Then we multiply by -1 on both sides. $-2x^2+3x = 5$ $-2x^2+3x-5=0$ $2x^2-3x+5=0$ With the equation in standard form, we see that $a = 2, b = -3$, and $c = 5$.	 Write x² + 6 = 4x in standard form and determine a, b, and c. Which of the following is true? A. b = -4 B. b = 1 C. b = 4 D. b = 6
Objective [16.1b] Solve quadra	atic equations of the type $ax^2 + bx = 0$,	where $b \neq 0$, by factoring.
Brief Procedure	Example	Practice Exercise
Factor $ax^2 + bx$ and then use the principle of zero prod- ucts. An equation of the type $ax^2 + bx = 0$ will always have 0 as one solution and a nonzero number as the other solution.	Solve: $5x^2 - 4x = 0$. $5x^2 - 4x = 0$ x(5x - 4) = 0 x = 0 or 5x - 4 = 0 x = 0 or 5x = 4 $x = 0 \text{ or } x = \frac{4}{5}$ The solutions are 0 and $\frac{4}{5}$.	2. Solve: $2x^2 + 3x = 0$. A. $0, -3$ B. $0, -\frac{3}{2}$ C. $0, -\frac{2}{3}$ D. $0, \frac{3}{2}$
Objective [16.1c] Solve quadra by factoring.	tic equations of the type $ax^2 + bx + c =$	= 0, where $b \neq 0$ and $c \neq 0$,
Brief Procedure	Example	Practice Exercise
Factor $ax^2 + bx + c$ and then use the principle of zero products.	Solve: $2x^2 + 5x = 3$. First we write the equation in stan- dard form. Then we factor and use the principle of zero products. $2x^2 + 5x = 3$ $2x^2 + 5x - 3 = 0$ (2x - 1)(x + 3) = 0 2x - 1 = 0 or $x + 3 = 02x = 1$ or $x = -3x = \frac{1}{2} or x = -3The solutions are \frac{1}{2} and -3.$	 3. Solve: x² + 20 = 9x. A. One solution is -5. B. One solution is -4. C. One solution is 3. D. One solution is 4.

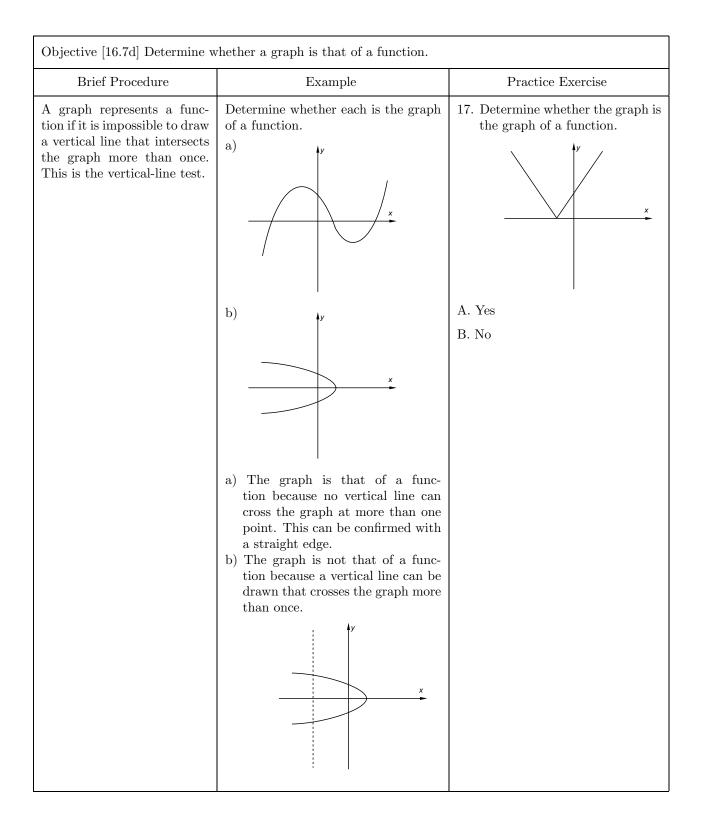
Brief Procedure	Example	Practice Exercise
Objective [16.1d] Solve applie Brief Procedure Use the five-step problem solving process.	ExampleExampleThe number of diagonals d of a poly- gon of n sides is given by the formula $d = \frac{n^2 - 3n}{2}$.If a polygon has 5 diagonals, how many sides does it have?1. Familiarize. We will use the for- mula given above.2. Translate. We substitute 5 for d in the formula. $5 = \frac{n^2 - 3n}{2}$ 3. Solve. We substitute 5 for d in the formula. $5 = \frac{n^2 - 3n}{2}$ 3. Solve. We solve the equation for n, first reversing the equation for convenience. $\frac{n^2 - 3n}{2} = 5$ $n^2 - 3n = 10$ $n^2 - 3n = 10$ $n^2 - 3n = 10$ $n - 5 = 0$ or $n + 2 = 0$ $n = 5$ or $n = -2$ 4. Check. Since the number of sides cannot be negative, -2 cannot be a solution. We substitute 5 for n 	
	$= \frac{25 - 15}{2} = \frac{10}{2}$ $= 5$ Since $d = 5$ when $n = 5$, the number	
	5 checks. 5. State. The polygon has 5 sides.	

Objective [16.2a] Solve quadratic equations of the type $ax^2 = p$.		
Brief Procedure	Example	Practice Exercise
 Solve for x² and then use the principle of square roots: a) The equation x² = d has two real solutions when d > 0. The solutions are √d and -√d. b) The equation x² = 0 has 0 as its only solution. c) The equation x² = d has no real-number solution when d < 0. 	Solve: $3x^2 = 15$. $3x^2 = 15$ $x^2 = 5$ $x = \sqrt{5} \text{ or } x = -\sqrt{5}$ The solutions are $\sqrt{5}$ and $-\sqrt{5}$.	5. Solve: $3x^2 - 2 = 0$. A. $\sqrt{2}, -\sqrt{2}$ B. $\sqrt{3}, -\sqrt{3}$ C. $\frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{3}$ D. $\frac{\sqrt{6}}{2}, -\frac{\sqrt{6}}{2}$
Objective [16.2b] Solve quadra	atic equations of the type $(x+c)^2 = d$.	
Brief Procedure	Example	Practice Exercise
Use the principle of square roots.	Solve: $x^2 - 2x + 1 = 25$. $x^2 - 2x + 1 = 25$ $(x - 1)^2 = 25$ x - 1 = 5 or x - 1 = -5 x = 6 or x = -4 The solutions are 6 and -4.	6. Solve: $(x + 3)^2 = 7$. A. $-7 \pm \sqrt{3}$ B. $7 \pm \sqrt{3}$ C. $-3 \pm \sqrt{7}$ D. $3 \pm \sqrt{7}$


Objective [16.2c] Solve quadratic equations by completing the square.		
Brief Procedure	Example	Practice Exercise
 If a ≠ 1, multiply by 1/a so that the x²-coefficient is 1. If the x²-coefficient is 1, add so that the equation is in the form x² + bx = -c, or x² + b/a x = -c/a if step (1) has been applied. Take half of the x-coefficient and square it. Add the result on both sides of the equation. Express the side with the variables as the square of a binomial. Use the principle of square roots and complete the solution. 	Solve: $2x^2 + 2x - 3 = 0$ by completing the square. First, we multiply by $\frac{1}{2}$ on both sides of the equation to make the x^2 - coefficient 1. $2x^2 + 2x - 3 = 0$ $\frac{1}{2}(2x^2 + 2x - 3) = \frac{1}{2} \cdot 0$ $x^2 + x - \frac{3}{2} = 0$ $x^2 + x = \frac{3}{2}$ Now we add $\left(\frac{b}{2}\right)^2$, or $\left(\frac{1}{2}\right)^2$, or $\frac{1}{4}$ on both sides. $x^2 + x + \frac{1}{4} = \frac{3}{2} + \frac{1}{4}$ $\left(x + \frac{1}{2}\right)^2 = \frac{7}{4}$ $x + \frac{1}{2} = \frac{\sqrt{7}}{2}$ or $x + \frac{1}{2} = -\frac{\sqrt{7}}{2}$ $x = -\frac{1}{2} + \frac{\sqrt{7}}{2}$ or $x = -\frac{1}{2} - \frac{\sqrt{7}}{2}$ The solutions are $\frac{-1 \pm \sqrt{7}}{2}$.	7. Solve: $x^2 + 2x - 5 = 0$. A. 1, -3 B. $-1 \pm \sqrt{5}$ C. $-1 \pm \sqrt{6}$ D. $-1 \pm \sqrt{7}$

Objective [16.2d] Solve certain problems involving quadratic equations of the type $ax^2 = p$.		
Brief Procedure	Example	Practice Exercise
Use the five-step problem solving process.	An object is dropped from the top of a 1214-m high building. How long will it take the object to reach the ground? 1. Familiarize. A formula that fits this situation is $s = 16t^2$, where s is the distance, in feet, traveled by a body falling freely from rest in t seconds. Here we know that s is 1214 m and we want to find t. 2. Translate. We substitute 1214 for s in the formula. $1214 = 16t^2$ 3. Solve. $1214 = 16t^2$ $\frac{1214}{16} = t^2$ $75.875 = t$ or $-\sqrt{78.875} = t$ $8.7 \approx t$ or $-8.7 \approx t$ 4. Check. Time cannot be negative in this situation, so -8.7 cannot be a solution. We substitute 8.7 for t in the formula: $s = 16(8.7)^2 = 16(75.69) =$ 1211.04 Note that $1211.04 \approx 1214$; since we approximated the solution, we have a check. 5. State. It would take the object about 8.7 sec to reach the ground.	 8. The Chrysler Building in New York is 1046 ft tall. How long would it take an object to fall to the ground from the top? A. About 7.9 sec B. About 8.1 sec C. About 8.2 sec D. About 8.5 sec


Objective [16.3a] Solve quadratic equations using the quadratic formula.		
Brief Procedure	Example	Practice Exercise
The solutions of the equation $ax^2 + bx + c = 0$ are given by the formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	Solve using the quadratic formula: $x^{2} + 4x = 3.$ First we find standard form and determine $a, b, \text{ and } c.$ $x^{2} + 4x - 3 = 0$ $a = 1, b = 4, c = -3$ Then we use the quadratic formula. $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{-4 \pm \sqrt{4^{2} - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1}$ $x = \frac{-4 \pm \sqrt{16 + 12}}{2} = \frac{-4 \pm \sqrt{28}}{2}$ $x = \frac{-4 \pm \sqrt{4 \cdot 7}}{2} = \frac{-4 \pm \sqrt{4}\sqrt{7}}{2}$ $x = \frac{-4 \pm 2\sqrt{7}}{2} = \frac{2(-2 \pm \sqrt{7})}{2 \cdot 1}$ $x = \frac{2}{2} \cdot \frac{-2 \pm \sqrt{7}}{1} = -2 \pm \sqrt{7}$ The solutions are $-2 + \sqrt{7}$ and $-2 - \sqrt{7}$, or $-2 \pm \sqrt{7}$.	9. Solve $2x^2 - 3x - 7 = 0$ using the quadratic formula. A. $\frac{-3 \pm \sqrt{65}}{4}$ B. $\frac{-3 \pm \sqrt{65}}{2}$ C. $\frac{3 \pm \sqrt{65}}{4}$ D. $\frac{3 \pm \sqrt{65}}{2}$
Objective [16.3b] Find approx	imate solutions of quadratic equations u	using a calculator.
Brief Procedure	Example	Practice Exercise
Use a calculator to find the approximate value of solutions found using the quadratic formula.	Use a calculator to approximate the solutions of $x^2 + 4x = 3$ to the nearest tenth. In Objective 16.3a we used the quadratic formula to find that the solutions of this equation are $-2 \pm \sqrt{7}$. Using a calculator and rounding to the nearest tenth, we have $-2 + \sqrt{7} \approx 0.6457513111 \approx 0.6$ and $-2 - \sqrt{7} \approx -4.645751311 \approx -4.6$. The approximate solutions are 0.6 and -4.6 .	 10. Use a calculator to approximate the solutions of x² - 5x + 2 = 0 to the nearest tenth. A. 3.4, -0.4 B. 4.6, 0.4 C. 5.4, -0.4 D. 5.8, 0.4


Objective [16.4a] Solve a formula for a given letter.		
Brief Procedure	Example	Practice Exercise
Use an appropriate equation- solving technique to get the letter alone on one side of the equation.	Solve $m^2 + n^2 = r^2$ for n . $m^2 + n^2 = r^2$ $n^2 = r^2 - m^2$ $n = \sqrt{r^2 - m^2}$	11. Solve $A = cd^2$ for d . A. $d = \frac{A}{c}$ B. $d = \sqrt{Ac}$ C. $d = \frac{c}{A}$ D. $d = \sqrt{\frac{A}{c}}$
Objective [16.5a] Solve applied	d problems using quadratic equations.	
Brief Procedure	Example	Practice Exercise
Use the five-step problem solving process.	The width of a rectangle is 5 m less than the length. The area is 66 m ² . Find the length and the width. 1. Familiarize. We first make a draw- ing. Let $l =$ the length. Then l-5 = the width.	 12. The speed of a boat in still water is 10 km/h. The boat travels 24 km upstream and 24 km downstream in a total time of 5 hr. What is the speed of the stream? A. 2 km/h B. 3 km/h C. 4 km/h D. 6 km/h

Objective [16.6a] Graph quadratic equations.

Objective [16.7a] Determine w	hether a correspondence is a function.	
Brief Procedure	Example	Practice Exercise
A function is a correspon- dence between a first set, called the domain, and a sec- ond set, called the range, such that each member of the domain corresponds to exactly one member of the range.	Determine whether each correspon- dence is a function. a) Domain Range $1 \longrightarrow 3$ $2 \longrightarrow -5$ $f:$ $3 \longrightarrow 8$ $4 \longrightarrow -4$ b) Domain Range $A \longrightarrow m$ $g:$ $C \longleftarrow t$ w a) f is a function because each mem- ber of the domain corresponds to exactly one member of the range. b) g is not a function because one member of the domain, C , corre- sponds to more than one member of the range.	 14. Determine whether the correspondence is a function. Domain Range 2 7 3 5 4 A. Yes B. No
	ction described by an equation, find fund values (inputs).	ction values (outputs)
Brief Procedure	Example	Practice Exercise
Evaluate the function for the value of the given input.	Find $f(-1)$ for $f(x) = 2x^2 - 1$. $f(-1) = 2(-1)^2 - 1 = 2 - 1 = 1$.	15. Find $g(2)$ for $g(x) = 3x - 5$. A11 B2
		C. 1 D. 8

Objective [16.7e] Solve applied problems involving functions and their graphs.		
Brief Procedure	Example	Practice Exercise
Read data from the graph.	The graph below shows the number of Americans over age 65 as a function of the year. (The data is projected for 2000-2030.)	 18. Use the graph at the left to determine the year in which there will be about 52 million Americans over 65. A. 2000 B. 2010 C. 2020 D. 2030