Developmental Mathematics Chapter 14 Review

Objective [14.1a] Determine whether an ordered pair is a solution of a system of two equations.		
Brief Procedure	Example	Practice Exercise
Determine whether the or- dered pair is a solution of both equations. If it is, it is a solution of the system of equations.	Determine whether $(1, -1)$ is a solu- tion of the system of equations y = x - 2, 2x + y = 3. Using alphabetical order of the vari- ables, we substitute 1 for x and -1 for y in both equations. $\frac{y = x - 2}{-1 ? 1 - 2} -1 \text{ TRUE}$ $\frac{2x + y = 3}{2 \cdot 1 + (-1) ? 3}$ $\frac{2 - 1}{1} \text{ FALSE}$ The pair $(1, -1)$ is not a solution of 2x + y = 3, so it is not a solution of the system of equations.	 Determine whether (2, -3) is a solution of the system of equations 2x - y = 7, x = y + 5. A. Yes B. No
	s of two linear equations in two variable	s by graphing.
Brief Procedure	Example	Practice Exercise
Graph both equations and find the coordinates of the point(s) of intersection, if any exist. If the graphs are par- allel lines, there is no point of intersection and, hence, no solution. If the equations have the same graph, there are infinitely many points of intersection and, thus, in- finitely many solutions. Oth- erwise, there is exactly one point of intersection and, hence, exactly one solution.	Solve this system of equations by graphing: x - y = 4, y = 2x - 5. We graph the equations. y y y y y y y y	 2. Solve this system of equations by graphing: 3x - 2y = 6, x - y = 1. A. (-2, -6) B. (2, 0) C. (4, 3) D. (5, 4)
	be $(1, -3)$. This checks in both equations, so it is the solution.	

of the equations has a variable alone on one side.		
Brief Procedure	Example	Practice Exercise
Using the equation with a variable alone on one side, substitute for that variable in the other equation, obtaining an equation in one variable. Solve that equation; then substitute in either original equation to find the other variable.	Solve the system x + y = -2, (1) x = 2y + 7. (2) First substitute $2y + 7$ for x in Equa- tion (1) and solve for y . x + y = -2 (2y + 7) + y = -2 3y + 7 = -2 3y = -9 y = -3 Now substitute -3 for y in either of the original equations and find x . We choose Equation (2) because it has x alone on one side. x = 2y + 7 = 2(-3) + 7 = -6 + 7 = 1 The ordered pair $(1, -3)$ checks in both equations, so it is the solution of the system of equations.	 3. Solve the system y = x - 2, x - 2y = 6. A. The y-value is 0. B. The y-value is -12. C. The y-value is -2. D. The y-value is -4.
Objective [14,2b] Solve a system of two equations in two variables by the substitution method when		

Objective [14.2a] Solve a system of equations in two variables by the substitution method when one of the equations has a variable alone on one side

Objective [14.2b] Solve a system of two equations in two variables by the substitution method when neither equation has a variable alone on one side.

Brief Procedure	Example	Practice Exercise
Solve one equation for one of the variables, choosing a variable that has a coefficient of 1, if possible. Then sub- stitute for that variable in the other equation, obtain- ing an equation in one vari- able. Solve that equation. Finally, substitute in either original equation to find the other variable.	Solve the system $\begin{array}{l} x - 2y = 1, (1) \\ 2x - 3y = 3. (2) \end{array}$ We solve Equation (1) for x, since the coefficient of x is 1 in that equation. $\begin{array}{l} x - 2y = 1 \\ x = 2y + 1 (3) \end{array}$ Now substitute for x in Equation (2) and solve for y. $\begin{array}{l} 2x - 3y = 3 \\ 2(2y + 1) - 3y = 3 \\ 4y + 2 - 3y = 3 \\ y + 2 = 3 \\ y = 1 \end{array}$ Now substitute 1 for y in Equation (1), (2), or (3) and find x. We choose Equation (3) since it is already solved for x. $\begin{array}{l} x = 2y + 1 = 2 \cdot 1 + 1 = 2 + 1 = 3 \\ \end{array}$ The ordered pair (3, 1) checks in both equations, so it is the solution of the system of equations.	 4. Solve the system x + y = 3, 5x + 2y = 3. A. The x-value is -1. B. The x-value is 4. C. The x-value is -3. D. The x-value is 1.

solving using the substitution method.		
Brief Procedure	Example	Practice Exercise
Use the five-step problem solving process.	The sum of two numbers is 1. One number is 11 more than the other. Find the numbers. 1. Familiarize. We let $x =$ the smaller number and $y =$ the larger number. 2. Translate. The first statement gives us one equation. The sum of two numbers is 1. $\downarrow \qquad \downarrow \qquad$	 5. The perimeter of a rectangular poster is 12 ft. The length is twice the width. Find the length and width. A. The length is 2 ft. B. The length is 4 ft. C. The length is 6 ft. D. The length is 8 ft.

Objective [14.2c] Solve applied problems by translating to a system of two equations and then solving using the substitution method.

when no multiplication is necessary.		
Brief Procedure	Example	Practice Exercise
Add the corresponding sides of the equations to elimi- nate a variable. Solve for that variable. Then substi- tute in either of the original equations to find the other variable.	Solve the system 2x - y = 5, (1) $x + y = 7. (2)$ First, we add. 2x - y = 5 $x + y = 7$ $3x = 12$ $x = 4$ Now substitute 4 for x in either of the original equations and solve for y. We use Equation (2). x + y = 7 $4 + y = 7$ $y = 3$ The ordered pair (4,3) checks in both equations, so it is a solution of the system of equations.	 6. Solve the system 3x + 2y = 1, x - 2y = -13. A. The y-value is -3. B. The y-value is -1. C. The y-value is 5. D. The y-value is 8.
Objective [14.3b] Solve a system of two equations in two variables using the elimination method when multiplication is necessary.		
Brief Procedure	Example	Practice Exercise
Multiply one or both equa- tions by appropriate con- stants to find equivalent equations with a pair of terms that are opposites. Then add the corresponding sides of the equations to elim- inate a variable. Solve for that variable. Finally, substi- tute in either of the original equations to find the other variable.	Solve the system 2a - 3b = 7, (1) $3a - 2b = 8. (2)$ We could eliminate either <i>a</i> or <i>b</i> . Here we decide to eliminate the <i>a</i> -terms. Multiply Equation (1) by 3 and Equa- tion (2) by -2. Then add and solve for <i>b</i> . 6a - 9b = 21 $-6a + 4b = -16$ $-5b = 5$ $b = -1$ Next substitute -1 for <i>b</i> in either of the original equations. 2a - 3b = 7 (1) $2a - 3(-1) = 7$ $2a + 3 = 7$ $2a = 4$ $a = 2$ The ordered pair (2, -1) checks in both equations, so it is a solution of the system of equations.	 7. Solve the system 3x + 2y = 5, x - y = 5. A. The y-value is -4. B. The y-value is -2. C. The y-value is 2. D. The y-value is 3.

Objective [14.3a] Soly f tr intions in two w riables using the elimination othod rate

Objective [14.3c] Solve applied problems by translating to a system of two equations and then solving using the elimination method.		
Brief Procedure	Example	Practice Exercise
Brief Procedure Use the five-step problem solving process.	ExampleTwo angles are supplementary. (Supplementary angles are angles whosesum is 180°.) The difference betweentwice one angle and the other angle is30°. Find the angles.1. Familiarize. We let x and y represent the angles.2. Translate. We know that the sum of the angles is 180°. This gives us one equation.The sum of the angles is 180°. This gives us one equation.Twice angles is 180°.Twice difference between two translates to a second equation.Twice one angle less the other is 30°.Twice other is 30°.Twice other is 30°.Twice other is 30°.Twice other is 30°.Quantum translate to a second equation.The use the additional information given to translate to a second equation.Twice other is 30°.Quantum translate to a second equation.The use the additional information given to translate to a second equation.Twice other is 30°.Quantum translate to a second equation.X + y = 180Quantum translate to a second equations:x + y = 180Quantum translate to a second equations:x + y = 180Quantum translate to a second equations:x + y = 180Quantum translate to a second equations:x + y = 180Quantu	 Practice Exercise 8. The sum of two numbers is -3. The sum of twice one number and the other is 4. Find the numbers. A. One number is -10. B. One number is -7. C. One number is -4. D. One number is 4.
	5. <i>State</i> . The angles are 70° and 110°.	

Copyright © 2000 Addison Wesley Longman

Objective [14.4a] Solve applied problems by translating to a system of two equations in two variables.		
Brief Procedure	Example	
Use the five-step problem solving process.	Solution A is 40% acid and solution B is 55% acid. How much of each should be used in order to make 100 L of a solution that is 46% acid?	
	1. Familiarize. Let x and y represent the number of liters of 40% and 55% solution to be used, respectively. We organize the given information in a table.	
	Type of solution A B Mixture	
	$ \begin{array}{c cccc} Amount of \\ solution & x & y & 100 L \end{array} $	
	$\begin{array}{ c c c } Percent & 40\% & 55\% & 46\% \\ \hline of acid & & & & & & & \\ \end{array}$	
	$\begin{array}{c c} \text{Amount of acid} \\ \text{in solution} \end{array} 40\% x 55\% y \begin{array}{c} 46\% \times 100, \\ \text{or 46 L} \end{array}$	
	2. <i>Translate</i> . The first row of the table gives us one equation.	
	x + y = 100 The last row gives us a second equation	
	$40\%x \pm 55\%u = 46$ or	
	40%x + 55%y = 40, or 0.4x + 0.55y = 46	
	After multiplying by 100 on both sides of the second equation to clear decimals, we have the following system of equations	
	x + y = 100. (1)	
	40x + 55y = 4600 (2)	
	3. Solve. We use the elimination method. First multiply Equation (1) by -40 and then add to eliminate the <i>x</i> -terms	
	-40x - 40y = -4000	
	40x + 55y = 4600	
	15y = 600	
	y = 40	
	Now substitute in Equation (2) and solve for x .	
	x + y = 100	
	x + 40 = 100	
	x = 60	
	4. Check. The sum of 60 and 40 is 100. Also, 40% of 60 L is 24 L and 55% of 40 L is 22 L. These add up to 46 L, so the answer checks.	
	5. <i>State.</i> 60 L of solution A and 40 L of solution B should be used.	
	Practice Exercise	
	 9. There were 220 tickets sold for a school play. The price for students was \$3 and it was \$7 for non-students. A total of \$1080 was collected. How many of each type of ticket were sold? A. Student: 75, non-student: 145 B. Student: 90, non-student: 130 C. Student: 95, non-student: 125 D. Student: 115, non-student: 105 	

Objective [14.5a] Solve motion problems using the formula $d = rt$.		
Brief Procedure	Example	
Use the five-step problem solving process. It is often	A canoeist paddled for 1 hr with a 3 mph current. The return trip against the current took 2 hr. Find the speed of the canoe in still water.	
system of equations.	1. Familiarize. We first make a drawing. Let $d =$ the distance traveled in one direction and let $r =$ the speed of the canoe in still water. When the canoe travels with the current, its speed is $r + 3$ and traveling against the current the speed is $r - 3$.	
	With the current $r+3$	
	1 hours d miles	
	Against the current $r-3$	
	2 hours $d miles$	
	We can also organize the given information in a table. $d = r \cdot t$	
	Distance Speed Time	
	$\begin{array}{c c} With \\ current \\ \end{array} d \\ r+3 \\ 1 \\ \end{array}$	
	Against current d $r-3$ 2	
	2. Translate. Using $d = rt$, we get an equation from each row of the table.	
	d = (r+3)1, (1) d = (r-3)2 (2)	
3. Solve. We use the substi Equation (1).	3. Solve. We use the substitution method, substituting $(r-3)^2$ for d in Equation (1).	
	(r-3)2 = (r+3)1	
	2r - 6 = r + 3	
	r - 6 = 3	
	r = 9	
	4. Check. When $r = 9$, then $r + 3 = 12$ and $12 \cdot 1 = 12$, the distance traveled with the current. When $r = 9$, then $r - 3 = 6$ and $6 \cdot 2 = 12$, the distance traveled against the current. Since the distances are the same, the answer checks.	
	5. <i>State.</i> The speed of the canoe in still water is 9 mph.	
	Practice Exercise	
	10. A train leaves a station and travels west at 80 mph. One hour later a second train leaves the same station and travels west on a parallel track at 100 mph. When will it overtake the first train?A. 4 hr after the first train leavesB. 5 hr after the first train leavesC. 6 hr after the first train leavesD. 8 hr after the first train leaves	