Developmental Mathematics Chapter 10 Review

Objective [10.1a] Tell the mean	ning of exponential notation.	
Brief Procedure	Example	Practice Exercise
Exponential notation a^n means that the base a is used as a factor n times.	What is the meaning of 2^4 ? of $(5x)^3$? 2^4 means $2 \cdot 2 \cdot 2 \cdot 2$. $(5x)^3$ means $5x \cdot 5x \cdot 5x$.	1. What is the meaning of y^5 ? A. $5 \cdot y$ B. $5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$ C. $y \cdot y \cdot y \cdot y \cdot y$ D. $y^5 \cdot y^5 \cdot y^5 \cdot y^5 \cdot y^5$
Objective [10.1b] Evaluate exp	oonential expressions with exponents of	0 and 1.
Brief Procedure	Example	Practice Exercise
$a^1 = a$, for any number a ; $a^0 = 1$, for any nonzero number a .	Evaluate 3^1 and $(-4)^0$. $3^1 = 3; (-4)^0 = 1$	2. Evaluate 2.8 ⁰ . A. 0 B. 1 C. 2.8 D2.8
Objective [10.1c] Evaluate algo	ebraic expressions containing exponents.	
Brief Procedure	Example	Practice Exercise
Make the substitution indi- cated and then perform the resulting computation.	Evaluate n^5 for $n = -1$. We substitute -1 for n and then eval- uate the power. $n^5 = (-1)^5$ $= (-1) \cdot (-1) \cdot (-1) \cdot (-1)$ $= -1$	3. Evaluate $4t^3$ for $t = -2$. A. -256 B. -32 C. -8 D. 32
Objective [10.1d] Use the prod	luct rule to multiply exponential express	sions with like bases.
Brief Procedure	Example	Practice Exercise
For any number a and any positive integers m and n , $a^m \cdot a^n = a^{m+n}$. (When multiplying with ex- ponential notation, if the bases are the same, keep the base and add the exponents.)	Multiply and simplify: $y^2 \cdot y^6$. $y^2 \cdot y^6 = y^{2+6} = y^8$	4. Multiply and simplify: $x^3 \cdot x^4$. A. x^7 B. $2x^7$ C. x^{12} D. x^{14}

Objective [10.1e] Use the quotient rule to divide exponential expressions with like bases.		
Brief Procedure	Example	Practice Exercise
For any nonzero number a and any positive integers m and n , $\frac{a^m}{a^n} = a^{m-n}$. (When dividing with expo- nential notation, if the bases are the same, keep the base and subtract the exponent of the denominator from the ex- ponent of the numerator.)	Divide and simplify: $\frac{a^{10}b^4}{a^2b} = \frac{a^{10}}{a^2} \cdot \frac{b^4}{b}$ $= a^{10-2}b^{4-1}$ $= a^8b^3$	5. Divide and simplify: $\frac{x^3y^7}{x^2y^4}$. A. y^3 B. xy^3 C. x^5y^{11} D. x^6y^{28}

Objective [10.1f] Express an exponential expression involving negative exponents with positive exponents.

Brief Procedure	Example	Practice Exercise
For any real number a that is nonzero and any integer n , $a^{-n} = \frac{1}{a}$.	Express using positive exponents. a) $3x^{-8}$ b) $\frac{1}{y^{-2}}$ a) $3x^{-8} = 3 \cdot \frac{1}{x^8} = \frac{3}{x^8}$ b) $\frac{1}{y^{-2}} = y^{-(-2)} = y^2$	 6. Express 2n⁻⁵ using positive exponents. A. 1/(2n⁵) B. 2/(n⁵) C. n⁵/2 D. 2n⁵
Objective [10.2a] Use the power	er rule to raise powers to powers.	
Brief Procedure	Example	Practice Exercise
For any real number a and any integers m and n , $(a^m)^n = a^{mn}$. (To raise a power to a power, multiply the exponents.)	Simplify: $(y^{-3})^2$. $(y^{-3})^2 = y^{-3 \cdot 2} = y^{-6} = \frac{1}{y^6}$	7. Simplify: $(b^{-4})^{-3}$. A. $\frac{1}{b}$ B. $\frac{1}{b^7}$ C. b^7 D. b^{12}

	Luct to a power and a quotient to a power	
Brief Procedure To raise a product to the <i>n</i> th power, raise each factor to the <i>n</i> th power. That is, for any real numbers <i>a</i> and <i>b</i> and any integer <i>n</i> , $(ab)^n = a^n b^n$.	Example Simplify: $(3x^{-4}y^2)^3$. $(3x^{-4}y^2)^3 = 3^3(x^{-4})^3(y^2)^3$ $= 27x^{-12}y^6$ $= \frac{27y^6}{x^{12}}$	Practice Exercises 8. Simplify: $(8a^{3}b^{-5})^{2}$. A. $\frac{8a^{5}}{b^{7}}$ B. $\frac{16a^{6}}{b^{10}}$ C. $\frac{64a^{3}}{b^{5}}$ D. $\frac{64a^{6}}{b^{10}}$
To raise a quotient to a power, raise both the numer- ator and the denominator to the power. That is, for any real numbers a and b , $b \neq 0$, and any integer n , $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$.	Simplify: $\left(\frac{4}{a^5}\right)^3$. $\left(\frac{4}{a^5}\right)^3 = \frac{4^3}{(a^5)^3} = \frac{64}{a^{15}}$	9. Simplify: $\left(\frac{y^4}{7}\right)^2$. A. $\frac{y^6}{49}$ B. $\frac{y^8}{49}$ C. $\frac{y^{16}}{49}$ D. $\frac{y^8}{7}$
Objective [10.2c] Convert betw	veen scientific notation and decimal not	ation.
Brief Procedure	Example	Practice Exercises
To convert from decimal no- tation to scientific notation, rewrite the number in the form $M \times 10^n$, where <i>n</i> is an integer, $1 \le M < 10$, and <i>M</i> is expressed in decimal nota- tion. If the original number is large (greater than 1), then <i>n</i> is positive. If it is a small number (less than 1), then <i>n</i> is negative.	Convert 0.00048 to scientific notation. 0.0004. 8 4 places The number is small, so the exponent is negative. $0.00048 = 4.8 \times 10^{-4}$	10. Convert 567,000 to scientific notation. A. 5.67×10^{-5} B. 5.67×10^{3} C. 5.67×10^{5} D. 567×10^{3}
Given a number $M \times 10^n$ in scientific notation, convert to decimal notation by moving the decimal point in M n places to the right or left. If the exponent is positive, the	Convert 4.208×10^6 to decimal nota- tion. The exponent is positive, so the num- ber is large. We move the decimal point 6 places to the right.	 11. Convert 3 × 10⁻⁴ to decimal notation. A. 0.0003 B. 0.003 C. 3000 D. 30,000

6 places

4.208000.

 \uparrow

 $4.208 \times 10^6 = 4,208,000$

number is large, so the deci-

mal point should be moved to the right. If the exponent is

negative, the number is small so the decimal point should

be moved to the left.

Brief Procedure	Example	Practice Exercise
Apply the commutative and associative laws and the rules for exponents. Objective [10.2e] Solve applied	Multiply and express the result in sci- entific notation: $(4.2 \times 10^8) \cdot (3.1 \times 10^{-3}).$ $(4.2 \times 10^8) \cdot (3.1 \times 10^{-3})$ $= (4.2 \cdot 3.1) \times (10^8 \cdot 10^{-3})$ $= 13.02 \times 10^5$ The answer at this stage is 13.02×10^5 , but this is not scientific notation, be- cause 13.02 is not a number between 1 and 10. We convert 13.02 to scientific notation and simplify. 13.02×10^5 $= (1.302 \times 10) \times 10^5$ $= 1.302 \times (10 \times 10^5)$ $= 1.302 \times 10^6$ d problems using scientific notation.	12. Divide and express the result in scientific notation: $\frac{3.3 \times 10^2}{4.4 \times 10^{-10}}$ A. 0.75×10^{-8} B. 0.75×10^{12} C. 7.5×10^{11} D. 7.5×10^{13}
Brief Procedure	Example	Practice Exercise
Express the numbers in- volved in scientific notation and carry out the indicated calculation.	In the summer about 1.3088×10^8 L of water spills over the Canadian side of Niagara Falls in 1 min. How much water spills over the falls in 1 sec? Ex- press the answer in scientific notation. We divide 1.3088×10^8 by 60, express- ing 60 in scientific notation as 6×10 . $\frac{1.3088 \times 10^8}{6 \times 10}$ $= \frac{1.3088 \times 10^8}{6} \times \frac{10^8}{10}$ $\approx 0.218 \times 10^7$ $\approx (2.18 \times 10^{-1}) \times 10^7$ $\approx 2.18 \times (10^{-1} \times 10^7)$ $\approx 2.18 \times 10^6$ About 2.18×10^6 L of water spills over the falls in 1 sec.	 13. Using the information given in the example at the left, find the amount of water that spills over the falls in 1 hr. Express the answer in scientific nota- tion. A. 7.8528 × 10⁶ L B. 7.8528 × 10⁸ L C. 7.8528 × 10⁹ L D. 78.528 × 10⁸ L

Objective [10.3a] Evaluate a polynomial for a given value of the variable.

Brief Procedure	Example	Practice Exercise
Substitute the given value for the variable and perform the calculations indicated us- ing the rules for order of operations.	Evaluate $3x^2 - 5x + 7$ for $x = -2$. $3x^2 - 5x + 7 = 3(-2)^2 - 5(-2) + 7$ $= 3 \cdot 4 - 5(-2) + 7$ = 12 + 10 + 7 = 22 + 7 = 29	14. Evaluate $-x^2 + 3x - 4$ for x = -1. A. -8 B. -6 C. -2 D. 0

Objective [10.3b] Identify the terms of a polynomial.

Brief Procedure	Example	Practice Exercise
Rewrite the subtractions in the polynomial as additions. Then each monomial being added is a term of the polynomial.	Identify the terms of the polynomial $3y^3 - 2y^2 - 5y + 1.$ $3y^3 - 2y^2 - 5y + 1 =$ $3y^3 + (-2y^2) + (-5y) + 1$ Then the terms are $3y^3, -2y^2, -5y$, and 1.	 15. Identify the terms of the polynomial -5y⁴ + 3y² - 2. A. 5y⁴, 3y², 2 B. 5y⁴, 3y² C5y⁴, 3y² D5y⁴, 3y², -2

Objective [10.3c] Identify the like terms of a polynomial.

Brief Procedure	Example	Practice Exercise
Identify the terms that have the same variable raised to the same power.	Identify the like terms in the polynomial $3x^2 - 4x + 5 - 6x^2 - 2x + 7$. $3x^2$ and $-6x^2$ have the same variable raised to the same power, so they are like terms. -4x and $-2x$ have the same variable raised to the same power, so they are like terms. The constant terms 5 and 7 are also like terms, because they can be thought of as $5x^0$ and $7x^0$, respectively.	 16. Identify all the like terms of the polynomial 4y⁵ - 7 - 3y⁵ + 4. A. 4y⁵ and -3y⁵ B7 and 4 C. 4y⁵ and 4 D. 4y⁵ and -3y⁵; -7 and 4

Objective [10.3d] Identify the coefficients of a polynomial.

Brief Procedure	Example	Practice Exercise
The coefficient of a term of a polynomial is the num- ber by which the variable is multiplied.	Identify the coefficients of each term of the polynomial $5y^6 - 10y^2 + 4$. The coefficient of $5y^6$ is 5. The coefficient of $-10y^2$ is -10 . The coefficient of 4 is 4.	17. Identify the coefficients of each term of the polynomial $-8x^3 + 4x^2 - 7$. A. -8 , 4 B. -8 , 4, -7 C. 3, 2 D. 3, 2, 0

Objective [10.3e] Collect the like terms of a polynomial.		
Brief Procedure	Example	Practice Exercise
The distributive laws allow us to collect like terms by adding or subtracting their coefficients.	Collect like terms: $5x^4 - 6x^2 - 3x^4 + 1.$ $5x^4 - 6x^2 - 3x^4 + 1$ $= (5-3)x^4 - 6x^2 + 1$ $= 2x^4 - 6x^2 + 1$	18. Collect like terms: $4x^3 - 2x^2 + 3x^2 - 5$. A. $7x^3 - 2x^2 - 5$ B. $4x^3 + x^2 - 5$ C. $5x^2 - 5$ D. x^2

Objective [10.3f] Arrange a polynomial in descending order, or collect the like terms and then arrange in descending order.

Brief Procedure	Example	Practice Exercise
Collect the like terms by adding or subtracting their coefficients. Then arrange the terms so that the expo- nents decrease from left to right.	0	19. Collect like terms and then ar- range in descending order: $x - x^2 + 6 + 7x - 9 - 2x^2$. A. $8x - 3x^2 - 3$ B. $-3 + 8x - 3x^2$ C. $-3 - 3x^2 + 8x$ D. $-3x^2 + 8x - 3$

Objective [10.3g] Identify the degree of each term of a polynomial and the degree of the polynomial.

Brief Procedure	Example	Practice Exercise
The degree of a term is the exponent of the variable. The degree of a polynomial is the largest of the degrees of the terms. The only ex- ception is the polynomial 0 which has no degree either as a term or as a polynomial.	Identify the degree of each term and the degree of the polynomial: $2x^4 - 6x^3 + x - 4$. The degree of $2x^4$ is the exponent of the variable, 4. The degree of $-6x^3$ is the exponent of the variable, 3. The degree of x is the exponent of the variable, 1, since $x = x^1$. The degree of -4 is the exponent of the variable, 0, since $-4 = -4x^0$. The largest of the degrees of the terms is 4, so the degree of the polynomial is 4.	 20. Identify the degree of the polynomial: -5x - x³ + 8x² + 7. A. 2 B. 3 C. 7 D. 8

Objective [10.3h] Identify the missing terms of a polynomial.		
Brief Procedure	Example	Practice Exercise
A term of a polynomial with a 0 coefficient is a miss- ing term. We consider only terms of lower degree than the degree of the polynomial to be missing.	Identify the missing terms in the polynomial $4x^3 - x$. There are no terms with degree 2 or 0. (A term with degree 0 is a constant term.) Thus the x^2 - and x^0 -terms are missing.	 21. Identify the missing terms in the polynomial 6x⁴ - x² + 7. A. x B. x³ C. x³, x D. x⁵, x³, x
Objective [10.3i] Classify a po	lynomial as a monomial, binomial, trino	mial, or none of these.
Brief Procedure	Example	Practice Exercise
A polynomial with just one term is a monomial. A poly- nomial with just two terms is a binomial. A polynomial with just three terms is a trinomial. Those with more than three terms do not gen- erally have a specific name.	 Classify each of the following as a monomial, binomial, trinomial, or none of these. a) x² - 7 b) 2x³ - x² + 5x + 6 a) This polynomial has just two terms, so it is a binomial. b) This polynomial has more than three terms, so it is none of these. 	 22. Classify -6x⁷ as a monomial, binomial, trinomial, or none of these. A. Monomial B. Binomial C. Trinomial D. None of these
Objective [10.4a] Add polynom	nials.	
Brief Procedure	Example	Practice Exercise
To add two polynomials, write a plus sign between them and then collect like terms. The polynomials can also be written with like terms in columns and then added.	Add: $(5x^3 + x - 7) + (2x^3 - 4x^2 + 3)$. $(5x^3 + x - 7) + (2x^3 - 4x^2 + 3)$ $= (5+2)x^3 - 4x^2 + x + (-7+3)$ $= 7x^3 - 4x^2 + x - 4$	23. Add: $(6x^4 - 5x^2 - 1) +$ $(x^3 - 3x^2 + 4).$ A. $7x^4 - 8x^2 + 3$ B. $7x^4 - 8x^3 + 3$ C. $6x^4 + x^3 - 8x^2 + 3$ D. $6x^4 + x^3 - 2x^2 + 3$
Objective [10.4b] Find the opp	posite of a polynomial.	
Brief Procedure	Example	Practice Exercise
Replace each term of the polynomial with its opposite. That is, change the sign of each term.	Simplify $-(10x^2 - 5x + 2)$. We change the sign of each term. $-(10x^2 - 5x + 2) = -10x^2 + 5x - 2$	24. Simplify $-(-x^3 + 3x - 4)$. A. $x^3 + 3x - 4$ B. $x^3 - 3x + 4$ C. $-x^3 - 3x - 4$ D. $-x^3 - 3x + 4$
Objective [10.4c] Subtract polynomials.		
Brief Procedure	Example	Practice Exercise
Add the opposite of the poly- nomial being subtracted. In other words, change the sign of each term of the poly- nomial being subtracted and then collect like terms.	Subtract: $(4x^2 - x + 3) - (6x^2 - 4x - 1).$ $(4x^2 - x + 3) - (6x^2 - 4x - 1)$ $= 4x^2 - x + 3 - 6x^2 + 4x + 1)$ $= -2x^2 + 3x + 4$	25. Subtract: $(x^3 - x + 2) - (5x^3 + x^2 - 8)$. A. $-4x^3 + 10$ B. $-4x^3 + x^2 - x - 6$ C. $-4x^3 - x^2 - x - 6$ D. $-4x^3 - x^2 - x + 10$

Objective [10.4d] Use polynomials to represent perimeter and area.			
Brief Procedure	Example	Practice Exercise	
Use formulas from geometry for perimeter and area, and use addition and subtraction of polynomials.	A square sandbox that is x ft on a side is placed on a lawn that is 12 ft by 18 ft. Find a polynomial for the area of the lawn not covered by the sandbox. First we make a drawing. If x ft	 26. One rectangle has length 3y and width 2y. Another has length 5y and width y. Find a polynomial for the sum of the perimeters of the rectangles. A. 11y B. 22y C. 11y² D. 30y⁴ 	
Objective [10.5a] Multiply mo	nomials.		
Brief Procedure	Example	Practice Exercise	
Multiply the coefficients, and then multiply the variables using the product rule for exponents.	Multiply: $(-3y^2)(6y^5)$. $(-3y^2)(6y^5) = (-3 \cdot 6)(y^2 \cdot y^5)$ $= -18y^{2+5}$ $= -18y^7$	27. Multiply: $(5n^4)(-2n^2)$. A. $-7n^6$ B. $-10n^2$ C. $-10n^6$ D. $-10n^8$	
Objective [10.5b] Multiply a monomial and any polynomial.			
Brief Procedure	Example	Practice Exercise	
Multiply each term of the polynomial by the monomial.	Multiply: $3x(2x^3 - x)$. $3x(2x^3 - x) = (3x)(2x^3) - (3x)(x)$ $= 6x^4 - 3x^2$	28. Multiply: $2x^2(x^2 - 3x - 5)$. A. $3x^2 - 3x - 5$ B. $2x^4 - 3x - 5$ C. $2x^4 - 6x^3 - 5$ D. $2x^4 - 6x^3 - 10x^2$	

Objective [10.5c] Multiply two binomials.		
Brief Procedure	Example	Practice Exercise
Use the distributive law and collect like terms, if possible.	Multiply: $(x - 3)(x + 2)$. (x - 3)(x + 2) = x(x + 2) - 3(x + 2) $= x^2 + 2x - 3x - 6$ $= x^2 - x - 6$	29. Multiply: $(2x - 7)(x + 1)$. A. $2x^2 - 7x$ B. $2x^2 - 7x - 7$ C. $2x^2 - 5x - 7$ D. $2x^2 + 2x - 7$

Objective [10.5d] Multiply any two polynomials.

Brief Procedure	Example	Practice Exercise
Multiply each term of one polynomial by every term of the other and collect like terms, if possible. It is often convenient to write the mul- tiplication in columns.	Multiply: $(x^2 - 2x + 3)(x - 1)$. We use columns. First we multiply the top row by -1 and then by x , placing like terms of the product in the same column. Finally we collect like terms. $\frac{x^2 - 2x + 3}{x^2 - 2x + 3}$ $\frac{x - 1}{-x^2 + 2x - 3}$ $\frac{x^3 - 2x^2 + 3x}{x^3 - 3x^2 + 5x - 3}$	30. Multiply: $(x^3 - 3x + 1)(x^2 + 4)$. A. $x^5 - 3x^3 + x^2$ B. $x^5 - 12x + 1$ C. $x^5 + x^3 - 11x^2 + 4$ D. $x^5 + x^3 + x^2 - 12x + 4$

Objective [10.6a] Multiply two binomials mentally using the FOIL method.

Brief Procedure	Example	Practice Exercise
To multiply two binomials, A+B and $C+D$, multiply the F irst terms AC , the O utside terms AD , the I nside terms BC, and then the L ast terms BD. Then collect like terms, if possible.	Multiply: $(2x + 3)(x - 4)$. (2x + 3)(x - 4) F O I L $= 2x \cdot x + 2x \cdot (-4) + 3 \cdot x + 3 \cdot (-4)$ $= 2x^2 - 8x + 3x - 12$ $= 2x^2 - 5x - 12$	31. Multiply: $(y + 2)(3y - 5)$. A. $3y^2 + y - 10$ B. $3y^2 - 5y - 10$ C. $3y^2 + 6y - 10$ D. $3y^2 - 11y - 10$
(A+B)(C+D) = AC+AD+BC+BD		

Objective [10.6b] Multiply the sum and difference of two terms mentally.

Brief Procedure	Example	Practice Exercise
The product of the sum and the difference of the same two terms is the square of the first term minus the square of the second term: $(A+B)(A-B) = A^2 - B^2$	Multiply: $(2x + 1)(2x - 1)$. $(2x + 1)(2x - 1) = (2x)^2 - 1^2$ $= 4x^2 - 1$	32. Multiply: $(x + 6)(x - 6)$. A. $x^2 + 12x - 36$ B. $x^2 - 12x - 36$ C. $x^2 + 36$ D. $x^2 - 36$

Objective [10.6c] Square a binomial mentally.

· · · · · ·	-	•	
Brief Procedu	ire	Example	Practice Exercise
The square of a sum ference of two terms square of the first to or minus twice the of the two terms, square of the last ter $(A+B)^2 = A^2 + 2A$ $(A-B)^2 = A^2 - 2A$	$\begin{array}{c} \text{ns is the} \\ \text{erm, plus} \\ \text{product} \\ \text{plus the} \\ \text{erm:} \\ \\ AB + B^2; \end{array}$	ly: $(3x - 4)^2$. $(3x - 4)^2$ $(3x)^2 - 2 \cdot 3x \cdot 4 + 4^2$ $9x^2 - 24x + 16$	33. Multiply: $(2x + 1)^2$. A. $4x^2 + 1$ B. $2x^2 + 4x + 1$ C. $4x^2 + 2x + 1$ D. $4x^2 + 4x + 1$

Objective [10.6d] Find special products when polynomial products are mixed together.

Brief Procedure	Example	Practice Exercise
 Use the rule for the square of a binomial or for the product of the sum and difference of the same two terms, if applicable. To find the product of two binomials when the rules above do not apply, use FOIL. To find the product of a monomial and a polyno- mial, multiply each term of the polynomial by the monomial. To find the product of two polynomials other than those above, multiply each term of one by every term of the other. 	Multiply: $(n-4)(n+3)$. This is the product of two binomials, but it is not the square of a binomial nor the product of the sum and differ- ence of the same two terms. We use FOIL. $(n-4)(n+3) = n^2 + 3n - 4n - 12$ $= n^2 - n - 12$	34. Multiply: $(3y + 1)^2$. A. $9y^2 + 1$ B. $3y^2 + 3y + 1$ C. $9y^2 + 3y + 1$ D. $9y^2 + 6y + 1$

Objective [10.7a] Evaluate a polynomial in several variables for given values of the variables.

Brief Procedure	Example	Practice Exercise
Make the substitutions indi- cated and then perform the resulting computation.	Evaluate the polynomial $x^2y^2 - 3xy + 2xy^3$ for $x = 2$ and $y = -1$. We replace x with 2 and y with -1 . $x^2y^2 - 3xy + 2xy^3$ $= 2^2(-1)^2 - 3(2)(-1) + 2(2)(-1)^3$ = 4(1) - 3(2)(-1) + 2(2)(-1) = 4 + 6 - 4 = 6	35. Evaluate the polynomial $2xy^2 - 4x^3y + 5$ for $x = -1$ and $y = 3$. A25 B1 C. 35 D. 119

Objective [10.7b] For a polynomial in several variables, identify the coefficients and the degrees of
the terms and the degree of the polynomial.

Brief Procedure	Example	Practice Exercise
The coefficient of a term is the number by which the variables are multiplied. The degree of a term is the sum of the exponents of the vari- ables. The degree of a poly- nomial is the degree of the term of highest degree.	Identify the coefficient and the degree of each term and the degree of the polynomial $8xy^3 - 7x^2y^4 + 5xy - 4$. $\frac{\text{Term}}{8xy^3} \frac{\text{Coefficient}}{8} \frac{\text{Degree}}{4}$ $\frac{-7x^2y^4}{-7} = \frac{6}{5}xy = 5$ $\frac{2}{-4} = -4 = 0$ The degree of the term of highest de- gree is 6, so the degree of the polyno- mial is 6.	36. Identify the degree of the polynomial $2x^2y - 8x^3y^4 + 9x + 6x^2y^3 - 1$. A. 3 B. 5 C. 7 D. 9
Objective [10.7c] Collect like t	erms of a polynomial (in several variable	es).
Brief Procedure	Example	Practice Exercise
Like terms have exactly the same variables with exactly the same exponents. The dis- tributive laws allow us to col- lect like terms by adding or subtracting their coefficients.	Collect like terms: $7ab - ab^2 - 2ab + 5a^2b + 4ab^2$. $7ab - ab^2 - 2ab + 5a^2b + 4ab^2$ $= (7 - 2)ab + (-1 + 4)ab^2 + 5a^2b$ $= 5ab + 3ab^2 + 5a^2b$	37. Collect like terms: $5xy^2 - 4x^2y + 3 + 2x^2y + 7 - xy^2$. A. $3xy^2 - 5x^2y + 10$ B. $xy^2 + 10 + x^2y$ C. $4xy^2 - 2x^2y + 10$ D. $7xy^2 - 5x^2y + 10$
Objective [10.7d] Add polynor	nials (in several variables).	
Brief Procedure	Example	Practice Exercise
To add two polynomials in several variables, write a plus sign between them and then collect like terms.	Add: $(3x^3 - 2xy + 4) + (x^3 - xy^2 + 5)$. $(3x^3 - 2xy + 4) + (x^3 - xy^2 + 5)$ $= (3 + 1)x^3 - 2xy - xy^2 + (4 + 5)$ $= 4x^3 - 2xy - xy^2 + 9$	38. Add: $(2x^3y^2 - 3x^2y + xy^2) + (5x^2y^2 + 4x^2y - 8xy^2)$. A. $7x^3y^2 + x^2y - 7xy^2$ B. $7x^3y^2 - 7x^2y - 7xy^2$ C. $2x^3y^2 - 7x^2y + 5x^2y^2 - 7xy^2$ D. $2x^3y^2 + x^2y + 5x^2y^2 - 7xy^2$
Objective [10.7e] Subtract pol	Objective [10.7e] Subtract polynomials (in several variables).	
Brief Procedure	Example	Practice Exercise
Add the opposite of the polynomial being subtracted.	Subtract: $(m^4n + 2m^3n^2 - m^2n^3) - (3m^4n + 2m^3n^2 - 4m^2n^2)$. $(m^4n + 2m^3n^2 - m^2n^3) - (3m^4n + 2m^3n^2 - 4m^2n^2)$ $= m^4n + 2m^3n^2 - m^2n^3 - 3m^4n - 2m^3n^2 + 4m^2n^2$ $= -2m^4n - m^2n^3 + 4m^2n^2$	39. Subtract: $(a^{3}b^{2} - 5a^{2}b + 2ab) - (3a^{3}b^{2} - ab^{2} + 4ab)$. A. $-2a^{3}b^{2} - 5a^{2}b + 6ab - ab^{2}$ B. $-2a^{3}b^{2} - 5a^{2}b - 2ab + ab^{2}$ C. $-2a^{3}b^{2} - 4a^{2}b + 6ab$ D. $4a^{3}b^{2} - 5a^{2}b - 2ab + ab^{2}$

Objective [10.7f] Multiply polynomials (in several variables).		
Brief Procedure	Example	Practice Exercise
Multiply each term of one polynomial by every term of the other. Use the rules for special products where appropriate. Objective [10.8a] Divide a poly	Multiply: $(xy^2 - 3x)(xy + y^2)$. We use FOIL. $(xy^2 - 3x)(xy + y^2)$ F O I L $= x^2y^3 + xy^4 - 3x^2y - 3xy^2$	40. Multiply: $(2x + 5y)^2$. A. $4x^2 + 25y^2$ B. $4x^2 + 10xy + 25y^2$ C. $4x^2 + 20xy + 25y^2$ D. $4x^2 - 20xy + 25y^2$
Brief Procedure	Example	Practice Exercise
Divide the coefficients and then divide the variables us- ing the quotient rule for exponents.	Divide: $(6x^3 - 8x^2 + 15x) \div (3x)$. $\frac{6x^3 - 8x^2 + 15x}{3x}$ $= \frac{6x^3}{3x} - \frac{8x^2}{3x} + \frac{15x}{3x}$ $= \frac{6}{3}x^{3-1} - \frac{8}{3}x^{2-1} + \frac{15}{3}$ $= 2x^2 - \frac{8}{3}x + 5$	41. Divide: $(4y^2 - 5y + 12) \div 4$. A. $y^2 - 5y + 12$ B. $y^2 - \frac{5}{4}y + 12$ C. $y^2 - \frac{5}{4}y + 3$ D. $4y^2 - 5y + 3$
Objective [10.8b] Divide a poly	ynomial by a divisor that is not a mono	l mial.
Brief Procedure	Example	Practice Exercise
Use long division by repeat- ing the following procedure until the degree of the re- mainder is less than the de- gree of the divisor. 1. Divide, 2. Multiply, 3. Subtract, and 4. Bring down the next term.	Divide $x^2 - 3x + 7$ by $x + 1$. x - 4 $x + 1 \overline{\smash{\big } x^2 - 3x + 7}$ $\underline{x^2 + x}$ -4x + 7 $\underline{-4x - 4}$ 11 The answer is $x - 4 + \frac{11}{x + 1}$.	42. Divide: $(x^2 - 8x + 5) \div (x - 2)$. A. $x - 10 + \frac{25}{x - 2}$ B. $x - 10 + \frac{-15}{x - 2}$ C. $x - 6 + \frac{-17}{x - 2}$ D. $x - 6 + \frac{-7}{x - 2}$