Developmental Mathematics Chapter 13 Review

Objective [13.1a] Given the coordinates of two points on a line, find the slope of the line.			
Brief Procedure	Example	Practice Exercise	
The slope of a line containing points (x_1, y_1) and (x_2, y_2) is given by $m = \frac{\text{rise}}{\text{run}}$ $= \frac{\text{the change in } y}{\text{the change in } x}$ $= \frac{y_2 - y_1}{x_2 - x_1}.$	Find the slope, if it exists, of the line containing the points $(-1, 5)$ and (2, -3). Consider (x_1, y_1) to be $(-1, 5)$ and (x_2, y_2) to be $(2, -3)$. Slope = $\frac{\text{the change in } y}{\text{the change in } x}$ = $\frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{-3 - 5}{2 - (-1)}$ = $\frac{-8}{3}$, or $-\frac{8}{3}$ Note that we would have gotten the same result if we had considered (x_1, y_1) to be $(2, -3)$ and (x_2, y_2) to be $(-1, 5)$. We can subtract in either order as long as the x-coordinates are subtracted in the same order in which the y-coordinates are subtracted.	 Find the slope, if it exists, of the line containing the points (6, -2) and (8, -1). A2 B¹/₂ C. ¹/₂ D. 2 	
Objective [13.1b] Find the slop	pe of a line from an equation.		
Brief Procedure	Example	Practice Exercise	
To find the slope of a non- vertical line given in an equa- tion $Ax + By = C$, solve the equation for y and get the re- sulting equation in the form y = mx + b. The coefficient of the x -term, m , is the slope of the line. The slope of a vertical line is undefined.	Find the slope, if it exists, of each line. a) $3x + 4y = 8$ b) $y = -1$ c) $x = 2$ a) We solve for y to get the equation in the form $y = mx + b$. 3x + 4y = 8 4y = -3x + 8 $y = \frac{-3x + 8}{4}$ $y = -\frac{3}{4}x + 2$ The slope is $-\frac{3}{4}$. b) We can think of $y = -1$ as y = 0x - 1. Then we see that the slope is 0. Note that the graph of this equation is a horizontal line. The slope of any horizontal line is 0. c) The graph of $x = 2$ is a vertical line, so the slope is undefined.	 2. Find the slope, if it exists, of the line 2x - 3y = 12. A. 3/2 B. 2/3 C2/3 D4 	

Objective [13.1c] Find the slope or rate of change in an applied problem involving slope.			
Brief Procedure	Example	Practice Exercise	
Determine the rise and run, or the change in y and the change in x , and compute the slope, or rate of change.	A road rises 40 m over a horizontal distance of 1250 m. Find the grade of the road. Slope = $\frac{\text{rise}}{\text{run}}$ = $\frac{40}{1250}$ = 0.032 = 3.2%	 3. A set of stairs rises 12 ft over a horizontal distance of 150 ft. Find the grade of the stairs. A. 8% B. 12% C. 12.5% D. 15% 	

Objective [13.2a] Given an equation in the form y = mx + b, find the slope and the y-intercept; and find an equation of a line when the slope and the y-intercept are given.

Brief Procedure	Example	Practice Exercises
In the equation $y = mx + b$, the slope is m and the y -	Find the slope and y-intercept of $3x + 5y = 15$.	4. For the graph of $4x - 3y = 12$, which of the following is true?
intercept is $(0, b)$.	We solve the equation for y :	A. The slope is $\frac{3}{4}$.
	3x + 5y = 15 $5y = -3x + 15$	B. The slope is $-\frac{3}{-}$.
	$\frac{5y}{5} = \frac{-3x + 15}{5}$	C. The y-intercept is $(0, -4)$.
	$y = \frac{-3x}{-3x} + \frac{15}{-3x}$	D. The <i>y</i> -intercept is $(0, 4)$.
	$y = -\frac{3}{2}x + 3$	
	5 Now that the equation is in the form	
	$y = mx + b$, we see that the slope is $-\frac{3}{2}$ and the y-intercept is (0,3).	
	5	
When the slope m and the y -	A line has slope -3 and y-intercept	5. A line has slope 4 and y-intercept
intercept $(0, b)$ of a line are given find an equation of the	(0,2). Find an equation of the line.	(0, -1). Find an equation of the
line by substituting in the	We substitute -3 for m and 2 for b in	inne.
equation $y = mx + b$.	the slope-intercept equation.	A. $y = -x + 4$
	y = mx + b	B. $y = -x - 4$
	y = -3x + 2	C. $y = 4x - 1$
		D. $y = 4x + 1$

Objective [13.2b] Find an equation of a line when the slope and a point on the line are given.			
Brief Procedure	Example	Practice Exercise	
Substitute the given slope for m in the slope-intercept equation $y = mx+b$ and then substitute the coordinates of the given point to find b .	Find an equation of the line with slope -2 that contains the point (3, -1). We know that the slope is -2 , so the equation is $y = -2x + b$. Using the point $(3, -1)$, we substitute 3 for x and -1 for y in $y = -2x + b$. y = -2x + b $-1 = -2 \cdot 3 + b$ -1 = -6 + b 5 = b Then the equation is $x = -2x + 5$.	 6. Find an equation of the line with slope 4 that contains the point (-2, -5). A. y = 4x - 5 B. y = 4x + 18 C. y = 4x - 2 D. y = 4x + 3 	
Objective [13.2c] Find an equa	tion of a line when two points on the line $y = -2x + 3$.	ne are given.	
Drief Dress dame	Francis	Drugting Francia	
Brief Procedure	Example	Practice Exercise	
Use the two given points to find the slope of the line. Next, substitute the slope for m in the slope-intercept equation $y = mx+b$ and then substitute the coordinates of either of the given points to find b .	Find an equation of the line contain- ing the points (4, 3) and (-2, 5). First, we find the slope. $m = \frac{3-5}{4-(-2)} = \frac{-2}{6} = -\frac{1}{3}$ Thus, $y = -\frac{1}{3}x + b$. Now use either of the given points to find b. We use (4,3) and substitute 4 for x and 3 for y. $y = -\frac{1}{3}x + b$ $3 = -\frac{1}{3} \cdot 4 + b$ $3 = -\frac{4}{3} + b$ $\frac{13}{3} = b$ Then the equation of the line is $y = -\frac{1}{3}x + \frac{13}{3}.$	 7. Find an equation of the line containing (-3, -2) and (3,4). A. y = x + 1 B. y = x - 7 C. y = -x + 1 D. y = -x - 7 	

Objective [13.3a] Determine whether the graphs of two linear equations are parallel.			
Brief Procedure	Example	Practice Exercise	
Parallel nonvertical lines have the same slope and dif- ferent y -intercepts.	Determine whether the graphs of the lines $y = -2x + 1$ and $4x + 2y = 5$ are parallel.	8. Determine whether the graphs of the lines $x + y = 3$ and $x - y = 3$ are parallel.	
Parallel vertical lines have equations $x = p$ and $x = q$,	The first equation is in slope-intercept form $(y = mx + b)$, so we see that it	A. Yes B. No	
where $p \neq q$.	has slope -2 and y-intercept (0,1). We solve the second equation for y.	2.10	
	4x + 2y = 5		
	2y = -4x + 5		
	$y = \frac{1}{2}(-4x+5)$		
	$y = -2x + \frac{5}{2}$		
	Thus, the slope of the second line is -2 and its <i>y</i> -intercept is $\left(0, \frac{5}{2}\right)$.		
	Since the two lines have the same slope, -2 , and different <i>y</i> -intercepts, $(0,1)$ and $\left(0,\frac{5}{2}\right)$, they are parallel.		

Objective [13.3b] Determine whether the graphs of two linear equations are perpendicular.		
Brief Procedure	Example	Practice Exercise
Two nonvertical lines are perpendicular if the product of their slopes is -1 .	Determine whether the graphs of the lines $2x + y = 4$ and $x + 2y = 3$ are perpendicular.	9. Determine whether the graphs of the lines $3x - 2y = 4$ and 4x + 6y = 3 are perpendicular.
If one equation in a pair of perpendicular lines is verti- cal, then the other is horizon- tal. That is, two lines with equations $x = a$ and $y = b$ are perpendicular.	We first solve each equation for y in order to determine the slopes. a) $2x + y = 4$ y = -2x + 4 b) $x + 2y = 3$ 2y = -x + 3 $y = \frac{1}{2}(-x + 3)$ $y = -\frac{1}{2}x + \frac{3}{2}$ The slopes are -2 and $-\frac{1}{2}$. The prod- uct of the slopes is $-2\left(-\frac{1}{2}\right) = 1$. Since the product of the slopes is not -1 the lines are not perpendicular	A. Yes B. No
Objective [13.4a] Determine whether an ordered pair of numbers is a solution of an inequality in two variables.		

Brief Procedure	Example	Practice Exercise
Following alphabetical or- der, substitute the coordi- nates of the ordered pair in the inequality and deter- mine whether a true inequal- ity results.	Determine whether $(4, -1)$ is a solution of $x + 3y \ge 5$. Use alphabetical order to replace x with 4 and y with -1 . $\begin{array}{c c} x + 3y \ge 5 \\ \hline 4 + 3(-1) & ? & 5 \\ \hline 4 - 3 & \\ 1 & \\ \end{array}$ FALSE Since $1 \ge 5$ is false, $(4, -1)$ is not a solution.	 10. Determine whether (-2, 5) is a solution of 3x + y ≤ -1. A. Yes B. No

Objective [13.4b] Graph linear inequalities.

Objective [13.5a] Find an equation of direct variation given a pair of values of the variables.			
Brief Procedure	Example	Practice Exercise	
An equation of direct varia- tion has the form $y = kx$, where k is a positive con- stant. Substitute the given values in this equation to find k.	Find an equation of variation in which y varies directly as x and $y = 20$ when x = 4. We substitute to find k: y = kx $20 = k \cdot 4$ 5 = k Then the equation of variation is y = 5x.	12. Find an equation of variation in which y varies directly as x and y = 3 when $x = 2$. A. $y = \frac{2}{3}x$ B. $y = \frac{3}{2}x$ C. $y = 5x$ D. $y = 6x$	
Objective [13.5b] Solve applied	d problems involving direct variation.		
Brief Procedure	Example	Practice Exercise	
Use the five-step problem solving process, translating to an equation of direct variation.	The interest I earned in 1 yr on a fixed principal varies directly as the interest rate r. An investment earns \$56.25 at an interest rate of 3.75%. How much will the investment earn at a rate of 4.5%? 1., 2. Familiarize and Translate. The problem states that we have di- rect variation between the vari- ables I and r. Thus, an equa- tion $I = kr, k > 0$, applies. As the interest rate increases, the amount of interest earned in- creases. 3. Solve. First find an equation of variation. I = kr $56.25 = k \cdot 0.0375$ $\frac{56.25}{0.0375} = k$ 1500 = k The equation of variation is I = 1500r. Now use the equation to find the interest earned when the interest rate is 4.5%. I = 1500(0.045) I = 67.50 (continued)	 13. The amount of Melissa's paycheck P varies directly as the number H of hours worked. For working 16 hr, her pay is \$132. Find her pay for 28 hr of work. A. \$224 B. \$231 C. \$242 D. \$256 	

Objective [13.5b] (continued)			
Brief Procedure	Example	Practice Exercise	
	4. Check. This check might be done by repeating the computa- tions. We might also do some rea- soning about the answer. The in- terest rate increased from 3.75% to 4.5%. Similarly, the interest earned increased from \$56.25 to \$67.50.		
	5. <i>State.</i> When the interest rate is 4.5%, the investment earns \$67.50.		
Objective [13.5c] Find an equa	ation of inverse variation given a pair of	values of the variables.	
Brief Procedure	Example	Practice Exercise	
An equation of inverse varia- tion is of the form $y = k/x$, where k is a positive con- stant. Substitute the given values in the equation to find	Find an equation of variation in which y varies inversely as x and $y = 10$ when $x = 0.5$. We substitute to find k .	14. Find an equation of variation in which y varies inversely as x and $y = 12$ when $x = 3$. A. $y = \frac{1}{36x}$	
<i>k</i> .	$y = \frac{k}{x}$ $10 = \frac{k}{0.5}$ $5 = k$ The equation of variation is $y = \frac{5}{x}$.	B. $y = \frac{1}{4x}$ C. $y = \frac{4}{x}$ D. $y = \frac{36}{x}$	
Objective [13.5d] Solve applied	d problems involving inverse variation.		
Brief Procedure	Example	Practice Exercise	
Use the five-step problem solving process, translating to an equation of inverse variation.	 The time t required to drive a fixed distance varies inversely as the speed r. It takes 4 hr at 60 mph to drive a fixed distance. How long would it take at 50 mph? 1. Familiarize. The problem states that we have inverse variation between the variables t and r. As the speed decreases, the time required to travel the fixed distance increases. 2. Translate. We write an equation of variation. Travel time varies inversely as speed. This translates to t = k/r. (continued) 	 15. It takes 4 days for 2 people to paint a house. How long will it take 3 people to do the job? A. 2 days B. 2²/₃ days C. 3 days D. 3¹/₃ days 	

Objective [13.5d] (continued)		
Brief Procedure	Example	Practice Exercise
	3. Solve. First find an equation of variation. $t = \frac{k}{r}$ $4 = \frac{k}{60}$ $240 = k$ The equation is $t = \frac{240}{r}$. Now use the equation to find the time required to travel the fixed distance at 50 mph. $t = \frac{240}{r}$ $t = \frac{240}{50}$ $t = 4.8$ 4. Check. In addition to repeating the computations, we can analyze the results. The speed decreased from 60 mph to 50 mph, and the travel time increased from 4 hr to 4.8 hr. This is what we would expect with inverse variation.	
	5. State. It would take 4.8 hr to travel the fixed distance at a speed of 50 mph.	