Developmental Mathematics Chapter 12 Review

Objective [12.1a] Find all numbers for which a rational expression is undefined.				
Brief Procedure	Example	Practice Exercise		
Determine the values of the variable that make the de- nominator zero.	Find all numbers for which the ratio- nal expression $\frac{x-2}{x^2-16}$ is undefined. We set the denominator equal to 0 and solve. $x^2 - 16 = 0$ (x+4)(x-4) = 0 x+4 = 0 or $x-4 = 0x = -4$ or $x = 4The expression is undefined for thenumbers -4 and 4.$	 Find all numbers for which the rational expression y + 3 y² + 4y - 5 is undefined. A5 B3 C5, 1 D5, -3, 1 		
Brief Procedure	Example	Practice Exercise		
Multiply the numerators and multiply the denominators.	Multiply: $\frac{x+3}{2x-1} \cdot \frac{x+2}{x+2}$. $\frac{x+3}{2x-1} \cdot \frac{x+2}{x+2} = \frac{(x+3)(x+2)}{(2x-1)(x+2)}$	2. Multiply: $\frac{3y}{y-4} \cdot \frac{2y}{2y}$ A. $\frac{(3y)(2y)}{y-4}$ B. $\frac{3y}{(y-4)(2y)}$ C. $\frac{2y}{(y-4)(2y)}$ D. $\frac{(3y)(2y)}{(y-4)(2y)}$		

removing factors of 1.				
Brief Procedure	Example	Practice Exercise		
Factor the numerator and the denominator of the rational expression and remove fac- tors that are common to the numerator and the denomi- nator. These factors of 1 can also be canceled.	Simplify by removing a factor of 1: $ \frac{6x^2 + 9x}{3x^2 - 3x} $ $ \frac{6x^2 + 9x}{3x^2 - 3x} = \frac{3x(2x + 3)}{3x(x - 1)} $ $ = \frac{3x}{3x} \cdot \frac{2x + 3}{x - 1} $ $ = 1 \cdot \frac{2x + 3}{x - 1} $ $ = \frac{2x + 3}{x - 1} $ This could be done using canceling as follows: $ \frac{6x^2 + 9x}{3x^2 - 3x} = \frac{3x(2x + 3)}{3x(x - 1)} $ $ = \frac{3x(2x + 3)}{3x(x - 1)} $ $ = \frac{3x(2x + 3)}{3x(x - 1)} $ $ = \frac{2x + 3}{x - 1} $	3. Simplify by removing a factor of 1: $\frac{x^2 + x - 6}{x^2 + 6x + 9}$. A. $\frac{x - 6}{6x + 9}$ B. $\frac{x - 2}{x + 3}$ C. $-\frac{1}{3}$ D. $-\frac{2}{3}$		
Brief Procedure	Example	Practice Exercise		
Multiply the numerators and the denominators and then simplify by removing a factor of 1.	Multiply and simplify: $\frac{x^2 + 3x - 4}{18} \cdot \frac{6}{x^2 + x - 12}.$ $\frac{x^2 + 3x - 4}{18} \cdot \frac{6}{x^2 + x - 12}.$ $= \frac{(x^2 + 3x - 4)6}{18(x^2 + x - 12)}$ $= \frac{(x + 4)(x - 1)6}{3(6)(x + 4)(x - 3)}$ $= \frac{(x + 4)(x - 1)\emptyset}{3(\emptyset)(x + 4)(x - 3)}$ $= \frac{x - 1}{3(x - 3)}$	4. Multiply and simplify: $\frac{a+1}{a-3} \cdot \frac{a^2+2a-15}{a^2-a-2}.$ A. $\frac{a+5}{a-2}$ B. $\frac{a-5}{a-2}$ C. $\frac{a+5}{a+2}$ D. $\frac{a-5}{a+2}$		

Objective [12.1c] Simplify rational expressions by factoring the numerator and the denominator and removing factors of 1.

Objective	[12.2a]	Find	the	reciprocal	of a	a rational	expression.
0.0,0001.00			0110	reerproceed	010	~ 100101101	enpression.

Brief Procedure	Example	Practice Exercise
Interchange the numerator and the denominator of the expression.	Find the reciprocal of each expression. a) $\frac{x+1}{x^2+5}$ b) $2y+3$ c) $\frac{1}{z-6}$ a) The reciprocal of $\frac{x+1}{x^2+5}$ is $\frac{x^2+5}{x+1}$. b) Think of $2y+3$ as $\frac{2y+3}{1}$. Then the reciprocal is $\frac{1}{2y+3}$. c) The reciprocal of $\frac{1}{z-6}$ is $\frac{z-6}{1}$, or z-6.	5. Find the reciprocal of $\frac{x-3}{2x+5}$. A. $\frac{5}{3}$ B. $2x+5$ C. $\frac{1}{x-3}$ D. $\frac{2x+5}{x-3}$

Objective [12.2b] Divide rational expressions and simplify.

Brief Procedure	Example	Practice Exercise
Multiply by the reciprocal of the divisor. Then simplify by removing a factor of 1, if possible.	$\frac{y^2 - 4y + 3}{y + 6} \div \frac{2y - 6}{y^2 + 2y - 24}$ $= \frac{y^2 - 4y + 3}{y + 6} \div \frac{y^2 + 2y - 24}{2y - 6}$	6. Divide and simplify: $\frac{x^2 - 9}{5} \div \frac{x + 3}{x - 5}.$ A. $x(x - 3)$ B. $-\frac{3(x^2 - 9)}{25}$ C. $\frac{(x - 3)(x - 5)}{5}$ D. $\frac{(x + 3)(x - 5)}{5}$

Objective [12.3a] Find the LCM of several numbers by factoring.

Brief Procedure	Example	Practice Exercise
Factor the numbers into prime factors and use each factor the greatest number of times that it occurs in any one factorization.	Find the LCM of 18 and 24. $18 = 2 \cdot 3 \cdot 3$ $24 = 2 \cdot 2 \cdot 2 \cdot 3$ The LCM is $2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$, or 72.	 7. Find the LCM of 12 and 27. A. 36 B. 54 C. 108 D. 324

Objective [12.3b] Add fractions, first finding the LCD.				
Brief Procedure	Example	Practice Exercise		
 a) Find the least common multiple of the denominators. That number is the least common denominator, LCD. b) Multiply by 1, using an appropriate notation, n/n, to express each number in terms of the LCD. c) Add the numerators, keeping the same denominator. d) Simplify, if possible. 	Add and simplify, if possible: $\frac{2}{9} + \frac{1}{6}.$ 9 = 3 · 3 and 6 = 2 · 3 so the LCM of 9 and 6 is 2 · 3 · 3, or 18. Thus the LCD is 18. $\frac{2}{9} + \frac{1}{6}$ $= \frac{2}{9} \cdot \frac{2}{2} + \frac{1}{6} \cdot \frac{3}{3}$ $= \frac{4}{18} + \frac{3}{18}$ $= \frac{7}{18}$ No simplification is necessary.	 8. Add and simplify, if possible: ³/₄ + ³/₁₀. A. ³/₇ B. ³/₁₄ C. ²¹/₂₀ D. ⁹/₄₀ 		
Objective [12.3c] Find the LC	M of algebraic expressions by factoring.			
Brief Procedure	Example	Practice Exercise		
Factor each expression and use each factor the greatest number of times it occurs in any one factorization.	Find the LCM of $5x-5$ and x^2-2x+1 . 5x-5 = 5(x-1) $x^2 - 2x + 1 = (x-1)(x-1)$ The LCM is $5(x-1)(x-1)$.	9. Find the LCM of $y^2 - 9$ and $y^2 + y - 6$. A. $(y+3)(y-3)(y-2)$ B. $(y+3)(y-3)(y+2)$ C. $(y+3)(y+3)(y-3)(y-2)$ D. $(y+3)(y-3)(y-3)(y-2)$		

Objective [12.4a] Add rational expressions.

Brief Procedure	Example	Practice Exercise
 To add when the denominators are the same, add the numerators and keep the same denominator. To add when when the denominators are different: 1. Find the LCM of the denominators. This is the least common denominator (LCD). 2. For each rational expression find an equivalent expression with the LCD. To do so, multiply by 1 using an expression for 1 made up of factors of the LCD that are missing from the original denominator. 3. Add the numerators. Write the sum over the LCD. 4. Simplify, if possible. 	Add: $\frac{2x}{3x+6} + \frac{1}{x^2-4}$. First we find the LCD: 3x+6 = 3(x+2) $x^2-4 = (x+2)(x-2)$ The LCD is $3(x+2)(x-2)$. Then we have: $\frac{2x}{3(x+2)} \cdot \frac{x-2}{x-2} + \frac{1}{(x+2)(x-2)} \cdot \frac{3}{3}$ $= \frac{2x(x-2)+3}{3(x+2)(x-2)}$ $= \frac{2x^2-4x+3}{3(x+2)(x-2)}$	10. Add: $\frac{3}{x^2 - 3x - 4} + \frac{5}{x^2 + 3x + 2}$ A. $\frac{8}{(x+1)(x-4)(x+2)}$ B. $\frac{3x+6}{(x+1)(x-4)(x+2)}$ C. $\frac{5x-20}{(x+1)(x-4)(x+2)}$ D. $\frac{8x-14}{(x+1)(x-4)(x+2)}$

Objective [12.5a] Subtract rational expressions.

Brief Procedure	Example	Practice Exercise
To subtract when the denom- inators are the same, sub-	Subtract: $\frac{x-3}{x+5} - \frac{x-2}{x+1}$.	11. Subtract: $\frac{4}{x^2 - 36} - \frac{1}{x - 6}$.
tract the numerators and keep the same denominator.	The LCD is $(x+5)(x+1)$.	A. $\frac{3}{(x+6)(x-6)}$
To subtract when denomina- tors are different: 1. Find the LCM of the de-	$\frac{x-3}{x+5} - \frac{x-2}{x+1}$	B. $\frac{-x+10}{(x+6)(x-6)}$
nominators. This is the least common denomina-	$= \frac{x-3}{x+5} \cdot \frac{x+1}{x+1} - \frac{x-2}{x+1} \cdot \frac{x+5}{x+5}$	C. $\frac{-x-2}{(x+6)(x-6)}$
tor (LCD). 2. For each rational expression find an equivalent ex-	$=\frac{(x-3)(x+1)}{(x+5)(x+1)} - \frac{(x-2)(x+5)}{(x+1)(x+5)}$	D. $\frac{x-2}{(x+6)(x-6)}$
pression with the LCD. To do so, multiply by 1 using	$=\frac{x^2-2x-3}{(x+5)(x+1)}-\frac{x^2+3x-10}{(x+5)(x+1)}$ $x^2-2x-3-(x^2+3x-10)$	
an expression for 1 made up of factors of the LCD	$=\frac{x^2 - 2x - 3 - (x^2 + 3x - 10)}{(x+5)(x+1)}$ $\frac{x^2 - 2x - 3 - x^2 - 3x + 10}{x^2 - 3x + 10}$	
that are missing from the original denominator.	$=\frac{x^2 - 2x - 3 - x^2 - 3x + 10}{(x+5)(x+1)}$	
3. Subtract the numerators. Write the sum over the LCD.	$=\frac{-5x+7}{(x+5)(x+1)}$	
4. Simplify, if possible.		

Objective [12.5b] Simplify combined additions and subtractions of rational expressions.				
Brief Procedure	Example	Practice Exercise		
Add and subtract as indi- cated and then simplify, if possible.	Perform the indicated operations and simplify, if possible: $\frac{4a}{a^2 - 4} - \frac{3}{a - 2} + \frac{5}{a}.$ The LCD is $a(a + 2)(a - 2)$. $\frac{4a}{(a + 2)(a - 2)} \cdot \frac{a}{a} - \frac{3}{a - 2} \cdot \frac{a(a + 2)}{a(a + 2)(a - 2)} + \frac{5}{a} \cdot \frac{(a + 2)(a - 2)}{(a + 2)(a - 2)} = \frac{4a^2}{a(a + 2)(a - 2)} - \frac{3a(a + 2)}{a(a + 2)(a - 2)} + \frac{5(a + 2)(a - 2)}{a(a + 2)(a - 2)} + \frac{5(a + 2)(a - 2)}{a(a + 2)(a - 2)} = \frac{4a^2}{a(a + 2)(a - 2)} - \frac{3a^2 + 6a}{a(a + 2)(a - 2)} + \frac{5(a^2 - 4)}{a(a + 2)(a - 2)} = \frac{4a^2 - (3a^2 + 6a) + 5a^2 - 20}{a(a + 2)(a - 2)} = \frac{4a^2 - 3a^2 - 6a + 5a^2 - 20}{a(a + 2)(a - 2)} = \frac{4a^2 - 3a^2 - 6a + 5a^2 - 20}{a(a + 2)(a - 2)} = \frac{6a^2 - 6a - 20}{a(a + 2)(a - 2)}$	12. Perform the indicated opera- tions and simplify, if possible: $\frac{3y}{y^2 + y - 20} + \frac{2}{y + 5} - \frac{3}{y - 4}.$ A. $\frac{-2y - 7}{(y + 5)(y - 4)}$ B. $\frac{-2y - 23}{(y + 5)(y - 4)}$ C. $\frac{2y - 7}{(y + 5)(y - 4)}$ D. $\frac{2y - 23}{(y + 5)(y - 4)}$		

Objective [12.6a] Solve rational equations.

Objective [12.6a] Solve rational equations.					
Brief Procedure	Example	Practice Exercise			
First multiply on both sides of the equation by the LCM of all the denominators to clear fractions. Then solve the resulting equation. Since this equation might have so- lutions that are not solu- tions of the original equa- tion, the possible solutions <i>must</i> be checked in the <i>origi-</i> <i>nal</i> equation.	Solve: $\frac{2x+1}{x-2} = \frac{x-1}{3x+2}$. The LCM of the denominators is (x-2)(3x+2). We multiply by the LCM on both sides. $\frac{2x+1}{x-2} = \frac{x-1}{3x+2}$ $(x-2)(3x+2) \cdot \frac{2x+1}{x-2} =$ $(x-2)(3x+2) \cdot \frac{x-1}{3x+2}$ (3x+2)(2x+1) = (x-2)(x-1) $6x^2 + 7x + 2 = x^2 - 3x + 2$ $5x^2 + 10x = 0$ 5x(x+2) = 0 5x = 0 or x + 2 = 0 x = 0 or x = -2 Both numbers check. The solutions are 0 and -2 .	13. Solve: $x - \frac{8}{x} = 2$. A2 B. 4 C2, 4 D2, 4, 8			
Objective [12.7a] Solve applied	d problems using rational equations.				
Brief Procedure	Example	Practice Exercise			
Use the five-step problem solving process.	One number is 3 more than another. The quotient of the larger number di- vided by the smaller is $\frac{3}{2}$. Find the numbers. 1. Familiarize. Let $x =$ the smaller number. Then $x + 3 =$ the larger number and the quotient of the larger divided by the smaller is $\frac{x+3}{x}$. 2. Translate. $\underbrace{\text{The quotient}}_{x+3} = \frac{3}{2}$ 3. Solve. We solve the equation. $\frac{x+3}{x} = \frac{3}{2}$ $2x \cdot \frac{x+3}{x} = 2x \cdot \frac{3}{2}$ 2(x+3) = 3x 2x + 6 = 3x If $x = 6$, then $x + 3 = 6 + 3$, or 9. (continued)	 14. A passenger car travels 10 km/h faster than a delivery van. While the car travels 240 km, the van travels 200 km. Find their speeds. A. The speed of the car is 45 km/h. B. The speed of the car is 50 km/h. C. The speed of the car is 60 km/h. D. The speed of the car is 65 km/h. 			

Copyright \bigodot 2000 Addison Wesley Longman

Objective [12.7a] (continued)		
Brief Procedure	Example	Practice Exercise
	 4. Check. The larger number, 9, is 3 more than the smaller number, 6. Also ⁹/₆ = ³/₂, so the numbers check. 5. State. The numbers are 6 and 9. 	
Objective [12.7b] Solve propor	rtion problems.	
Brief Procedure	Example	Practice Exercise
Use the five-step problem solving process, translating to a proportion (an equality of ratios).	Melinda biked 78 mi in 5 days. At this rate, how far would she bike in 7 days? 1. Familiarize. We can set up ratios, letting m = the number of miles Melinda would bike in 7 days. 2. Translate. We assume Melinda bikes at the same rate during the entire 7 days. Thus, the ratios are the same and we can write a pro- portion. Miles $\rightarrow \frac{78}{5} = \frac{m}{7} \leftarrow \text{Miles}$ Days $\rightarrow \frac{78}{5} = \frac{m}{7} \leftarrow \text{Days}$ 3. Solve. We multiply by the LCM, $5 \cdot 7$, or 35, on both sides. $35 \cdot \frac{78}{5} = 35 \cdot \frac{m}{7}$ $7 \cdot 78 = 5 \cdot m$ $\frac{7 \cdot 78}{5} = m$ 109.2 = m 4. Check. $\frac{78}{5} = 15.6$ and $\frac{109.2}{7} =$ 15.6; since the ratios are the same, the answer checks. 5. State. Melinda would bike 109.2 mi	 15. Jeremy can read 6 pages of his history textbook in 20 min. At this rate, how many pages can he read in 50 min? A. 13 B. 15 C. 18 D. 20

Objective [12.8a] Solve a rational formula for a letter.			
Brief Procedure	Example	Practice Exercise	
 Identify the letter and: Multiply on both sides to clear fractions or decimals, if necessary. Multiply to remove parentheses, if necessary. Get all terms with the letter to be solved for on one side of the equation and all other terms on the other side using the addition principle. Factor out the unknown, if necessary. Solve for the letter in question, using the multiplica- tion principle. 	Solve $S = \frac{n}{2}(a+l)$ for l . $S = \frac{n}{2}(a+l)$ $2S = n(a+l)$ $2S = an + ln$ $2S - an = ln$ $\frac{2S - an}{n} = l, \text{ or}$ $\frac{2S}{n} - a = l$	16. Solve $f = \frac{kMm}{d^2}$ for M . A. $M = fd^2km$ B. $M = \frac{fkm}{d^2}$ C. $M = \frac{fd^2}{km}$ D. $M = \frac{f}{d^2km}$	
Objective [12.9a] Simplify com			
 Brief Procedure To simplify by multiplying by the LCM of all the denominators: 1. First, find the LCM of all the denominators of all the rational expressions occurring within both the numerator and the denominator of the complex rational expression. 2. Then multiply by 1 using LCM/LCM. 3. If possible, simplify by removing a factor of 1. To simplify by adding or subtracting in the numerator and in the denominator: 1. Add or subtract, as necessary, to get a single rational expression in the numerator. 2. Add or subtract, as necessary, to get a single rational expression in the denominator. 3. Divide the numerator by the denominator. 	Example Simplify: $\frac{1-\frac{1}{x}}{1-\frac{1}{x^2}}$. Using the first method described at the left, we first observe that the LCM of the denominators within the numerator and the denominator is x^2 . We multiply by 1 using x^2/x^2 . $\frac{1-\frac{1}{x}}{1-\frac{1}{x^2}} \cdot \frac{x^2}{x^2}$ $= \frac{\left(1-\frac{1}{x}\right)x^2}{\left(1-\frac{1}{x^2}\right)x^2}$ $= \frac{1 \cdot x^2 - \frac{1}{x} \cdot x^2}{1 \cdot x^2 - \frac{1}{x^2} \cdot x^2}$ $= \frac{x^2 - x}{x^2 - 1}$ $= \frac{x(x-1)}{(x+1)(x-1)}$ $= \frac{x}{x+1}$	Practice Exercise 17. Simplify: $\frac{\frac{3}{y} + \frac{1}{y}}{y - \frac{y}{3}}$. A. $\frac{20}{9}$ B. $\frac{10}{9}$ C. $\frac{6}{y}$ D. $\frac{6}{y^2}$	

Copyright \bigodot 2000 Addison Wesley Longman

Objective [12.9a] (continued)		
Brief Procedure	Example	Practice Exercise
	Using the second method, we first subtract in the numerator and in the denominator.	
	$\frac{1-\frac{1}{x}}{1-\frac{1}{x^2}}$	
	$= \frac{1 \cdot \frac{x}{x} - \frac{1}{x}}{1 \cdot \frac{x^2}{x^2} - \frac{1}{x^2}}$	
	$= \frac{\frac{x}{x} - \frac{1}{x}}{\frac{x^2}{x^2} - \frac{1}{x^2}}$	
	$=\frac{\frac{x-1}{x}}{\frac{x^2-1}{x^2}}$	
	$= \frac{x-1}{x} \cdot \frac{x^2}{x^2-1} \\ = \frac{(x-1)(x)(x)}{x(x+1)(x-1)}$	
	$= \frac{x(x+1)(x-1)}{\cancel{x}(x+1)(\cancel{x})}$ $= \frac{x}{x+1}$	