Intermediate Algebra Chapter R Review

Objective [R.1a] Use roster and set-builder notation to name sets, and distinguish among various kinds of real numbers.			
Brief Procedure	Example	Practice Exercises	
To use roster notation to name a set, list all the objects in the set.	Use roster notation to name the set of negative integers greater than -5 . $\{-4, -3, -2, -1\}$	 Use roster notation to name the set of positive even integers less than 10. A. {2, 4, 6, 8} B. {2, 4, 6, 8, 10} C. {0, 2, 4, 6, 8} D. {0, 2, 4, 6, 8, 10} 	
To use set-builder notation to name a set, specify the condi- tions under which an object is in the set.	 Use set-builder notation to name the set of negative integers greater than -5. {x x is a negative integer greater than -5} This is read "the set of all x such that x is a negative integer greater than -5." 	 D. {0, 2, 4, 6, 8, 10} 2. Use set-builder notation to name the set of real numbers less than or equal to 12. A. {x x < 12} B. {x x ≤ 12} C. {x x ≥ 12} D. {x x < -12} 	
To distinguish among various kinds of real numbers, keep the following in mind. Natural numbers: $\{1, 2, 3,\}$ Whole numbers: $\{0, 1, 2, 3,\}$ Integers: $\{, -2, -1, 0, 1, 2,\}$ Rational numbers: $\left\{\frac{p}{q}\middle p$ and q are integers and $q \neq 0\right\}$ Irrational numbers: Numbers whose decimal represen- tation neither terminates nor repeats. They cannot be rep- resented as the quotient of two integers. Real numbers: $\{x x \text{ is a rational number} $	Given the numbers -5 , $\frac{7}{12}$, 2.68, 14, 0, $\sqrt{18}$, 0.212112111, and $\sqrt{64}$, name the integers. The numbers in the set of integers are -5 , 14, 0, and $\sqrt{64}$. (We include $\sqrt{64}$ because $\sqrt{64} = 8$.)	 D. {x x < -12} 3. Given the numbers in the example at the left, name the rational numbers. A5, ⁷/₁₂, 2.68, 14, 0, √64 B5, ⁷/₁₂, 2.68, 14, 0, √18, √64 C5, ⁷/₁₂, 2.68, 14, 0, 0.212112111, √64 D. All of them 	

Objective [R.1b] Determine which of two real numbers is greater and indicate which, using $\langle \text{ or } \rangle$; given an inequality like a < b, write another inequality with the same meaning; and determine whether an inequality like $-2 \leq 3$ or 4 > 5 is true.

· · · _			
Brief Procedure	Example	Practice Exercises	
To determine which of two real numbers is greater, con- sider the relative position of the two numbers on the num- ber line. The one on the left is less than the one on the right. The symbol < means "is less than" and the symbol > means "is greater than."	Use $\langle \text{ or } \rangle$ for \Box to write a true sentence: $-7 \Box -10$ Since -7 is to the right of -10 on the number line, we have $-7 > -10$.	 4. Use < or > for □ to write a true sentence: -8 □ 1 A. < B. > 	
Given an inequality like a < b, write another inequal- ity with the same meaning by interchanging a and b and re- versing the direction of the inequality symbol. An inequality like $-2 \le 3$ is true if either $-2 < 3$ is true or $-2 = 3$ is true. If neither is true, then the inequality is false. To determine whether an inequality like $4 > 5$ is true, determine the relative positions of the numbers on the number line. The one far- ther to the right is larger.	Write another inequality with the same meaning as $x > 8$. The inequality $8 < x$ has the same meaning. Determine whether each inequality is true or false. a) $-4 \le 1$ b) $6 \ge 6$ c) $-10 \ge 2$ a) $-4 \le 1$ b) $6 \ge 6$ c) $-10 \ge 2$ a) $-4 \le 1$ is true since $-4 < 1$ is true. b) $6 \ge 6$ is true since $6 = 6$ is true. c) $-10 \ge 2$ is false since neither -10 > 2 nor $-10 = 2$ is true.	 5. Write another inequality with the same meaning as -3 < t. A. t < -3 B. t > 3 C. 3 < t D. t > -3 6. Determine whether the inequality -1 ≥ -8 is true or false. A. True B. False 	

Objective [R.1c] Graph inequalities on the number line.

Brief Procedure	Example	Practice Exercise
Shade all points on the number line that are solutions of the given inequality.	 Graph each inequality. a) x < 1 b) x ≥ -2 a) The solutions of x < 1 are all numbers less than 1. We shade all points to the left of 1. Use an open circle at 1 to indicate that 1 is not part of the graph. →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→	7. Graph $x > 2$. A. A. -5 - 4 - 3 - 2 - 1 = 0 = 1 = 2 = 3 = 4 = 5 B. -5 - 4 - 3 - 2 - 1 = 0 = 1 = 2 = 3 = 4 = 5 C. -5 - 4 - 3 - 2 - 1 = 0 = 1 = 2 = 3 = 4 = 5 D. -5 - 4 - 3 - 2 - 1 = 0 = 1 = 2 = 3 = 4 = 5

Brief Procedure	Example	Practice Exercise
If the number is negative, make it positive. If the number is positive or zero, leave it alone.	Find $ -4.3 $. The number is negative, so we make it positive. -4.3 = 4.3	8. Find 59 . A59 B. 0 C. 59
Objective [R.2a] Add real nun	ibers.	l
 Brief Procedure 1. Positive numbers: Add the same as arithmetic numbers. The answer is positive. 2. Negative numbers: Add absolute values. The an- swer is negative. 3. A positive and a neg- ative number: Subtract the smaller absolute value from the larger. Then: a) If the positive num- ber has the greater ab- solute value, the an- swer is positive. b) If the negative num- ber has the greater ab- solute value, the an- swer is negative. c) If the numbers have the same absolute value, 	Example Add: $-15 + 9$. We have a negative and a positive number. The absolute values are 15 and 9. The difference is 6. The neg- ative number has the larger absolute value, so the answer is negative. -15 + 9 = -6	Practice Exercise 9. Add: -1.2 + (-3.4). A. 4.6 B. 2.2 C2.2 D4.6
 the answer is 0. 4. One number is zero: The sum is the other number. Objective [R.2b] Find the opp 	osite, or additive inverse, of a real numb	per.
Brief Procedure	Example	Practice Exercise
The opposite, or additive in- verse, of any real number a is the number $-a$ such that a + (-a) = (-a) + a = 0. To find the opposite of a number, we change its sign.	Find the opposite of $\frac{5}{3}$. The opposite of $\frac{5}{3}$ is $-\frac{5}{3}$ because $\frac{5}{3} + \left(-\frac{5}{3}\right) = 0.$	10. Find the opposite of -20. A20 B. 0 C. 20

Brief Procedure	Example	Practice Exercise	
For any real numbers a and b , a-b=a+(-b). (To subtract, add the oppo- site, or additive inverse, of the number being subtracted.)	Subtract: $6 - (-7)$. The opposite of -7 is 7. We change the subtraction to addition and add the opposite. 6 - (-7) = 6 + 7 = 13	11. Subtract: 2 – 12. A. –14 B. –10 C. 10 D. 14	
Objective [R.2d] Multiply real	numbers.		
Brief Procedure	Example	Practice Exercise	
a) Multiply the absolute values.b) If the signs are the same, the answer is positive.c) If the signs are different, the answer is negative.	Multiply: $-2.4(3)$. The signs are different, so the answer is negative. -2.4(3) = -7.2	12. Multiply: -7(-9). A63 B16 C. 2 D. 63	
Objective [R.2e] Divide real n	umbers.		
Brief Procedure	Example	Practice Exercise	
For any real numbers a and $b, b \neq 0,$ $a \div b = \frac{a}{b} = a \cdot \frac{1}{b}.$ (To divide, we can multi- ply by the reciprocal of the divisor.)	Divide: $-\frac{1}{3} \div \frac{2}{7}$. $-\frac{1}{3} \div \frac{2}{7} = -\frac{1}{3} \cdot \frac{7}{2} = -\frac{7}{6}$	13. Divide: $-\frac{3}{4} \div \left(-\frac{5}{11}\right)$. A. $-\frac{53}{44}$ B. $-\frac{13}{44}$ C. $\frac{15}{44}$ D. $\frac{33}{20}$	
Objective [R.3a] Rewrite expressions.	essions with whole-number exponents, a	nd evaluate exponential	
Brief Procedure	Example	Practice Exercises	
To rewrite expressions with whole-number exponents, count the number of identi- cal factors. Then make that number the exponent, using the repeated factor as the base.	Write exponential notation for $6 \cdot 6 \cdot 6 \cdot 6$. $\underbrace{6 \cdot 6 \cdot 6 \cdot 6}_{\downarrow} = 6^4$ 4 factors	 14. Write exponential notation for 2 · 2 · 2 · 2 · 2 · 2. A. 32 B. 5 · 2 C. 5² D. 2⁵ 	
To evaluate exponential expressions, rewrite the exponential expression as a prod- uct and compute.	Evaluate: 3^4 . $3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 81$	 15. Evaluate: 5³. A. 15 B. 125 C. 243 D. 625 	

Objective [R.3b] Rewrite expressions with or without negative integers as exponents.				
Brief Procedure	Example	Practice Exercises		
For any real number a that is nonzero and any integer n , $\frac{1}{a^n} = a^{-n}$.	Rewrite using positive exponents. a) $3x^{-8}$ b) $\frac{1}{y^{-2}}$ a) $3x^{-8} = 3 \cdot \frac{1}{x^8} = \frac{3}{x^8}$ b) $\frac{1}{y^{-2}} = y^{-(-2)} = y^2$	16. Rewrite $2n^{-5}$ using a positive exponent. A. $\frac{1}{2n^5}$ B. $\frac{2}{n^5}$ C. $\frac{n^5}{2}$ D. $2n^5$		
For any real number a that is nonzero and any integer n , $\frac{1}{a^n} = a^{-n}$.	Rewrite $\frac{1}{x^3}$ using a negative exponent. $\frac{1}{x^3} = x^{-3}$	 17. Express ¹/_{5⁴} using a negative exponent. A. ¹/_{5⁻⁴} B. ¹/_{(-5)⁴} C. 5⁴ D. 5⁻⁴ 		
Objective [R.3c] Simplify expr	essions using the rules for order of operative	ations.		
Brief Procedure	Example	Practice Exercise		
 Do all calculations within grouping symbols before operations outside. Evaluate all exponential expressions. Do all multiplications and divisions in order from left to right. Do all additions and sub- tractions in order from left to right. 	Simplify: $64 \div 4^2 \cdot 3 + (12 - 7)$. $64 \div 4^2 \cdot 3 + (12 - 7)$ $= 64 \div 4^2 \cdot 3 + 5$ $= 64 \div 16 \cdot 3 + 5$ = 12 + 5 = 17	18. Simplify: $9 + (19 - 9)^2 \div 5 \cdot 2$. A. 19 B. 49 C. 121 D. 220		
Objective [R.4a] Translate a p	hrase to an algebraic expression.			
Brief Procedure	Example	Practice Exercise		
Learn which words trans- late to certain operation sym- bols. (See page 33 in the text.) Choose a variable or variables to correspond to the number or numbers in- volved. It can be helpful to try some numerical examples before writing the algebraic expression.	Translate to an algebraic expression: Four less than some number. Let $n =$ the number. Now if the num- ber were 7, then the translation would be $7 - 4$. Similarly, if the number were 52, then the translation would be $52 - 4$. Thus, we see from these numerical examples, that if the num- ber were n , the translation would be n - 4.	 19. Translate to an algebraic expression: Three times some number. A. n + 3 B. n - 3 C. 3 - n D. 3n 		

Objective [R.4b] Evaluate an a	algebraic expression by substitution.	
Brief Procedure	Example	Practice Exercise
Substitute for the variable(s) and carry out the resulting calculation.	Evaluate $m - n$ for $m = 29$ and n = 12. Substitute 29 for m and 12 for n and carry out the subtraction. m - n = 29 - 12 = 17	20. Evaluate $\frac{x}{y}$ for $x = 72$ and $y = 9$. A. $\frac{1}{8}$ B. 8 C. 63 D. 81
Objective [R.5a] Determine w	nether two expressions are equivalent by	completing a table of values.
Brief Procedure	Example	Practice Exercise
	Complete the table by evaluating each expression for the given values. Then determine whether the expres- sions are equivalent. $\boxed{\begin{array}{c c} \hline x+x & 2x \\ \hline x=-3 & \hline \\ \hline x=0 & \hline \\ \hline x=4 & \hline \end{array}}$ We substitute and find the value of each expression. $\boxed{\begin{array}{c c} \hline x+x & 2x \\ \hline x=-3 & -6 & -6 \\ \hline x=0 & 0 & 0 \\ \hline x=4 & 8 & 8 \\ \end{array}}$ It appears that the expressions have the same value for all allowable re- placements, so they are equivalent.	21. Complete the table by eval- uating each expression for the given values. Then deter- mine whether the expressions are equivalent. $\boxed{\begin{array}{c c} 2(x-1) & 2x-1 \\ \hline x=-2 & \hline \\ x=3 & \hline \\ \hline x=3 & \hline \\ \end{array}}$ A. Equivalent B. Not equivalent
fractional exp		Deseties Francisc
Brief Procedure To find an equivalent frac- tional expression, multiply the fraction by 1 using n/n . If a specific denominator is desired, choose n by deter- mining the number the orig- inal denominator should be multiplied by in order to get the desired denominator.	Example Find a name for $\frac{2}{3}$ with a denomina- tor of 12. Since $3 \cdot 4 = 12$, we multiply by $\frac{4}{4}$: $\frac{2}{3} = \frac{2}{3} \cdot \frac{4}{4} = \frac{2 \cdot 4}{3 \cdot 4} = \frac{8}{12}$	Practice Exercise 22. Find a name for $\frac{3}{4}$ with a de- nominator of 20. A. $\frac{3}{20}$ B. $\frac{8}{20}$ C. $\frac{15}{20}$ D. $\frac{19}{20}$

Objective [R.5b] (continued)		
Brief Procedure	Example	Practice Exercise
To simplify a fractional expression, remove a factor of 1 to get the name for the fraction that has the smallest numerator and denominator.	Simplify: $\frac{16}{36}$. $\frac{16}{36} = \frac{4 \cdot 4}{4 \cdot 9} = \frac{4}{4} \cdot \frac{4}{9} = 1 \cdot \frac{4}{9} = \frac{4}{9}$	23. Simplify: $\frac{9}{24}$. A. $\frac{1}{6}$ B. $\frac{1}{3}$ C. $\frac{3}{8}$ D. $\frac{9}{8}$
Objective [R.5c] Use the com	nutative and associative laws to find equ	ivalent expressions.
Brief Procedure	Example	Practice Exercises
The Commutative Laws Addition For any numbers a and b , a + b = b + a. Multiplication For any num- bers a and b , ab = ba. (We can change the order when adding or when multi- plying without affecting the result.)	 Use a commutative law to write an equivalent expression. a) n+6 b) xy a) An equivalent expression is 6 + n, by the commutative law of addition. b) An equivalent expression is yx, by the commutative law of multiplication. 	 24. Use a commutative law to write an equivalent expression for 8 + a. A. a + 8 B. 8a C. a8 D. 8 - a
The Associative Laws Addition For any numbers a, b, and c, a + (b + c) = (a + b) + c. Multiplication For any num- bers $a, b, and c,$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c.$ (Numbers can be grouped in any manner for addition and for multiplication.)	 Use an associative law to write an equivalent expression. a) (m + n) + 1 b) 5(st) a) An equivalent expression is m + (n + 1), by the associative law of addition. b) An equivalent expression is (5s)t, by the associative law of multiplication. 	 25. Use an associative law to write an equivalent expression for (4x)y. A. y(4x) B. (x4)y C. 4(xy) D. y + (4x)
Objective [R.5d] Use the distr	ibutive laws to find equivalent expressio	ns by multiplying and factoring.
Brief Procedure	Example	Practice Exercises
To multiply, use the follow- ing: For any numbers a , b , and c , a(b+c) = ab + ac and a(b-c) = ab - ac.	Multiply: $5(2x - 3y + z)$. 5(2x - 3y + z) $= 5 \cdot 2x - 5 \cdot 3y + 5 \cdot z$ = 10x - 15y + 5z	26. Multiply: $3(x + 4y - 2z)$. A. $3x + 4y - 2z$ B. $3x + 12y + 6z$ C. $3x + 12y - 6z$ D. $3x - 12y - 6z$
To factor, find the largest fac- tor that is common to all the terms of the expression and factor it out.	Factor: $8a + 4b - 12c$. 8a + 4b - 12c $= 4 \cdot 2a + 4 \cdot b - 4 \cdot 3c$ = 4(2a + b - 3c)	27. Factor: $36m - 27n + 9p$. A. $3(12m - 9n + 3p)$ B. $36(m - 27n + 9p)$ C. $9(4m - 3n)$ D. $9(4m - 3n + p)$

Objective [R.6a]	Simplify	expressions	by collecting	like terms.
------------------	----------	-------------	---------------	-------------

Brief Procedure	Example	Practice Exercise	
Identify the terms with ex- actly the same variable, use the distributive laws to fac- tor out the variable, and then simplify.	Collect like terms: $3x - 5y + 8x + y.$ $3x - 5y + 8x + y$ $= 3x + 8x - 5y + y$ $= 3x + 8x - 5y + 1 \cdot y$ $= (3 + 8)x + (-5 + 1)y$ $= 11x - 4y$	28. Collect like terms: 6a - 4b - a + 2b. A. $5a - 2b$ B. $2a + b$ C. $6a - 2b$ D. $5a + 6b$	

Objective [R.6b] Simplify an expression by removing parentheses and collecting like terms.

Brief Procedure	Example	Practice Exercise
Use a distributive law to re- move parentheses and then collect like terms.	Remove parentheses and simplify: 6x - 2(x - 3y). 6x - 2(x - 3y) = 6x - 2x + 6y = 4x + 6y	 29. Remove parentheses and simplify: 3m - n - (2m + 5n). A. m + 4n B. 5m + 4n C. m - 4n D. m - 6n

Objective [R.7a] Use exponential notation in multiplication and division.

Brief Procedure	Example	Practice Exercises
For any number a and any positive integers m and n , $a^m \cdot a^n = a^{m+n}$. (When multiplying with ex- ponential notation, if the bases are the same, keep the base and add the exponents.)	Multiply and simplify: $y^2 \cdot y^6$. $y^2 \cdot y^6 = y^{2+6} = y^8$	30. Multiply and simplify: $x^3 \cdot x^4$. A. x^7 B. $2x^7$ C. x^{12} D. x^{14}
For any nonzero number a and any positive integers m and n , $\frac{a^m}{a^n} = a^{m-n}$. (When dividing with expo- nential notation, if the bases are the same, keep the base and subtract the exponent of the denominator from the ex- ponent of the numerator.)	Divide and simplify: $\frac{a^{10}b^4}{a^2b}$ $\frac{a^{10}b^4}{a^2b} = \frac{a^{10}}{a^2} \cdot \frac{b^4}{b}$ $= a^{10-2}b^{4-1}$ $= a^8b^3$	31. Divide and simplify: $\frac{x^3y^7}{x^2y^4}$. A. y^3 B. xy^3 C. x^5y^{11} D. x^6y^{28}

quotient to a power.			
Brief Procedure	Example	Practice Exercises	
To raise a power to a power, multiply the expo- nents. That is, for any real number a and any integers m and n , $(a^m)^n = a^{mn}$.	Simplify: $(y^{-3})^2$. $(y^{-3})^2 = y^{-3 \cdot 2} = y^{-6} = \frac{1}{y^6}$	32. Simplify: $(b^{-4})^{-3}$. A. $\frac{1}{b}$ B. $\frac{1}{b^7}$ C. b^7 D. b^{12}	
To raise a product to the <i>n</i> th power, raise each factor to the <i>n</i> th power. That is, for any real numbers <i>a</i> and <i>b</i> and any integer <i>n</i> , $(ab)^n = a^n b^n$.	Simplify: $(3x^{-4}y^2)^3$. $(3x^{-4}y^2)^3 = 3^3(x^{-4})^3(y^2)^3$ $= 27x^{-12}y^6$ $= \frac{27y^6}{x^{12}}$	33. Simplify: $(8a^{3}b^{-5})^{2}$. A. $\frac{8a^{5}}{b^{7}}$ B. $\frac{16a^{6}}{b^{10}}$ C. $\frac{64a^{3}}{b^{5}}$ D. $\frac{64a^{6}}{b^{10}}$	
To raise a quotient to a power, raise both the numer- ator and the denominator to the power. That is, for any real numbers a and b , $b \neq 0$, and any integer n , $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$.	Simplify: $\left(\frac{4}{a^5}\right)^3$. $\left(\frac{4}{a^5}\right)^3 = \frac{4^3}{(a^5)^3} = \frac{64}{a^{15}}$	34. Simplify: $\left(\frac{y^4}{7}\right)^2$. A. $\frac{y^6}{49}$ B. $\frac{y^8}{49}$ C. $\frac{y^{16}}{49}$ D. $\frac{y^8}{7}$	

Objective [R.7b] Use exponential notation in raising a power to a power and in raising a product or a quotient to a power.

Objective [R.7c] Convert between decimal notation and scientific notation and use scientific notation with multiplication and division.

Brief Procedure	Example	Practice Exercises
To convert from decimal no- tation to scientific notation, rewrite the number in the form $M \times 10^n$, where <i>n</i> is an integer, $1 \le M < 10$, and <i>M</i> is expressed in decimal nota- tion. If the original number is large (greater than 1), then <i>n</i> is positive. If it is a small number (less than 1), then <i>n</i> is negative.	Convert 0.00048 to scientific notation. 0.0004. 8 4 places The number is small, so the exponent is negative. $0.00048 = 4.8 \times 10^{-4}$	 35. Convert 567,000 to scientific notation. A. 5.67 × 10⁻⁵ B. 5.67 × 10³ C. 5.67 × 10⁵ D. 567 × 10³

Objective [R.7c] (continued)				
Brief Procedure	Example	Practice Exercises		
Given a number $M \times 10^n$ in scientific notation, convert to decimal notation by moving the decimal point in M n places to the right or left. If the exponent is positive, the number is large, so the deci- mal point should be moved to the right. If the exponent is negative, the number is small so the decimal point should be moved to the left.	Convert 4.208×10^{6} to decimal nota- tion. The exponent is positive, so the num- ber is large. We move the decimal point 6 places to the right. 4.208000. 1000000000000000000000000000000000000	 36. Convert 3 × 10⁻⁴ to decimal notation. A. 0.0003 B. 0.003 C. 3000 D. 30,000 		
To use scientific notation with multiplication and divi- sion, apply the commutative and associative laws and the rules for exponents.	Multiply and express the result in sci- entific notation: $(4.2 \times 10^8) \cdot (3.1 \times 10^{-3}).$ $(4.2 \times 10^8) \cdot (3.1 \times 10^{-3})$ $= (4.2 \cdot 3.1) \times (10^8 \cdot 10^{-3})$ $= 13.02 \times 10^5$ The answer at this stage is 13.02×10^5 , but this is not scientific notation, be- cause 13.02 is not a number between 1 and 10. We convert 13.02 to scientific notation and simplify. 13.02×10^5 $= (1.302 \times 10) \times 10^5$ $= 1.302 \times (10 \times 10^5)$ $= 1.302 \times 10^6$	37. Divide and express the result in scientific notation: $\frac{3.3 \times 10^2}{4.4 \times 10^{-10}}$ A. 0.75×10^{-8} B. 0.75×10^{12} C. 7.5×10^{11} D. 7.5×10^{13}		