Intermediate Algebra Chapter 2 Review

Objective [2.1a] Plot points associated with ordered pairs of numbers.				
Brief Procedure	Example	Practice Exercise		
Given a point (a, b) , start at the origin and move a units right or left depending on whether a is positive or negative. Then move b units up or down depending on whether b is positive or negative. Make a dot and label the point.	Plot the point $(3, -2)$. The first coordinate is positive so, starting at the origin, move 3 units to the right. The second coordinate is negative, so we then move down 2 units. Second axis First axis -5 - 4 - 3 - 2 - 10 -2 -3 -4 -3 -5 -4 -3 -5	1. Which point is $(-1, 4)$? Second axis -5 -4 -3 -2 -10 -5 -4 -3 -2 -10 -2 -2 -10		
Objective [2.1b] Determine whethe	er an ordered pair is a solution of an equ	nation.		
Brief Procedure	Example	Practice Exercise		
Substitute coordinates of the or- dered pair for the variables, us- ing the first number to replace the variable that occurs first al- phabetically. If a true equation results, the pair is a solution.	Determine whether $(-2, 2)$ is a solu- tion of $2b - a = 6$. We substitute -2 for a and 2 for b . $\begin{array}{r} 2b - a = 6\\ \hline 2 \cdot 2 - (-2) & ? & 6\\ \hline 4 + 2 & \\ \hline 6 & \\ \end{array}$ TRUE Since $6 = 6$ is true, $(-2, 2)$ is a solu- tion of the equation.	 2. Determine whether (-4, 1) is a solution of n - m = -5. A. Yes B. No 		

Objective [2.1d] Graph nonlinear equations using tables.					
Brief Procedure	Example	Practice Exercise			
Select numbers for x and find the corresponding y -values. Plot these points. Find enough points so that the shape of the graph is clear. Then draw the graph.	Graph $y = x^2 - 2x - 3$. Choose some values for x , find the corresponding y -values, plot points, and draw the graph. For $x = 1, y = 1^2 - 2 \cdot 1 - 3 = -4$. For $x = -1, y = (-1)^2 - 2(-1) - 3 = 0$. For $x = 0, y = 0^2 - 2 \cdot 0 - 3 = -3$. For $x = 2, y = 2^2 - 2 \cdot 2 - 3 = -3$. For $x = 3, y = 3^2 - 2 \cdot 3 - 3 = 0$.	4. Graph: $y = x^2 + 2x + 1$. A. y y y y y y y y			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B.			
	y -5 -4 -3 -2 -1 -5 -4 -3 -2 -1 -5 -4 -3 -2 -1 -5 -5 -2 -1 -5 -5 -2 -1 -	C.			
		D.			

Objective [2.2a] Determine whether a correspondence is a function.				
Brief Procedure	Example	Practice Exercise		
A function is a correspon- dence between a first set, called the domain, and a sec- ond set, called the range, such that each member of the domain corresponds to exactly one member of the range.	Determine whether each correspon- dence is a function. a) Domain Range $1 \longrightarrow 3$ $2 \longrightarrow -5$ $f:$ $3 \longrightarrow 8$ $4 \longrightarrow -4$ b) Domain Range $A \longrightarrow m$ $g:$ $C \longleftarrow t$ $c \longleftarrow w$ a) f is a function because each mem- ber of the domain corresponds to exactly one member of the range. b) g is not a function because one member of the domain, C , corre- sponds to more than one member of the range.	 5. Determine whether the correspondence is a function. Domain Range 2 7 3 5 4 A. Yes B. No 		
Objective [2.2b] Given a funct for specified v	ion described by an equation, find funct values (inputs).	ion values (outputs)		
Brief Procedure	Example	Practice Exercise		
Evaluate the function for the value of the given input.	Find $f(-1)$ for $f(x) = 2x^2 - 1$. $f(-1) = 2(-1)^2 - 1 = 2 - 1 = 1$.	6. Find $g(2)$ for $g(x) = 3x - 5$. A11 B2		
		C. 1 D. 8		

Objective [2.2e] Solve applied problems involving functions and their graphs.				
Brief Procedure	Example	Practice Exercise		
Read data from the graph.	The graph below shows the number of Americans over age 65 as a function of the year. (The data is projected for 2000-2030.)	 9. Use the graph at the left to determine the year in which there will be about 52 million Americans over 65. A. 2000 B. 2010 C. 2020 D. 2030 		

Objective [2.3a] Find the domain and the range of a function.				
Brief Procedure Example	Practice Exercise			
If the graph of a function is given, the domain is the set of all x-values, or inputs, of points on the graph, and the range is the set of all y-values, or outputs, of the points on the graph. To find the domain of a function given by an equa- tion, find the largest set of real numbers, or inputs, for which function values can be calculated. b) Find the domain of $g(x) = \frac{3}{x-4}$. a) The x-values of the points on the graph extend from -3 to 2, so the domain is $\{x - 3 \le x \le 2\}$, or [-4, 3]. b) Since $\frac{3}{x-4}$ cannot be calculated when the denominator, $x - 4$, is 0, we set the denominator, $x - 4$, is 0, we set the denominator equal to 0 and find the number(s) that must be excluded from the domain. x - 4 = 0 x = 4 Thus, 4 is not in the domain but all other real numbers are. The domain is $\{x x \text{ is a real numbers and }x \ne 4\}$, or $(-\infty, 4) \cup (4, \infty)$.	Find the domain of $g(x) = \frac{x-2}{x+3}.$ $\{x x \text{ is a real number and } x \neq 2\}$ $\{x x \text{ is a real number and } x \neq -3\}$ $\{x x \text{ is a real number and } x \neq -3 \text{ and } x \neq 2\}$ $\{x x \text{ is a real number and } x \neq -3 \text{ and } x \neq 2\}$			

Brief Procedure	Example	Practice Exercise
The y-intercept of the graph of $y = mx + b$ or $f(x) = mx + b$ is the point $(0, b)$, or simply b.	Find the y-intercept of $f(x) = -2x + 7$. The function is in the form $f(x) = mx + b$, so the y-intercept is $(0, 7)$, or simply 7.	11. Find the <i>y</i> -intercept of y = 3x - 5. A. (0, -5) B. (0, 5) C. (0, 3) D. $(0, \frac{5}{3})$

slope-intercept equation and determine the slope and the y -intercept.					
Brief Procedure	Example	Practice Exercises			
The slope of a line containing points (x_1, y_1) and (x_2, y_2) is given by $m = \frac{\text{rise}}{\text{run}}$ $= \frac{\text{the change in } y}{\text{the change in } x}$ $= \frac{y_2 - y_1}{x_2 - x_1}.$	Find the slope, if it exists, of the line containing the points $(-1, 5)$ and (2, -3). Consider (x_1, y_1) to be $(-1, 5)$ and (x_2, y_2) to be $(2, -3)$. Slope = $\frac{\text{the change in } y}{\text{the change in } x}$ = $\frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{-3 - 5}{2 - (-1)}$ = $\frac{-8}{3}$, or $-\frac{8}{3}$ Note that we would have gotten the same result if we had considered (x_1, y_1) to be $(2, -3)$ and (x_2, y_2) to be $(-1, 5)$. We can subtract in either order as long as the x-coordinates are subtracted in the same order in which the y-coordinates are subtracted	 12. Find the slope, if it exists, of the line containing the points (6, -2) and (8, -1). A2 B¹/₂ C. ¹/₂ D. 2 			
Given a linear equation, de-	Find the slope and y-intercept of $3x + 4y = 8$	13. Find the slope and y-intercept of $2x - \frac{3y - 12}{2}$			
rive the equivalent slope- intercept equation $y = mx+b$ by solving for y . The coef- ficient of the x -term, m , is the slope of the line. The y - intercept is the point $(0, b)$.	5x + 4y = 8. We solve for y to get the equation in the form $y = mx + b.$ 3x + 4y = 8	A. Slope: $\frac{3}{2}$; <i>y</i> -intercept: (0, 6) B. Slope: $\frac{2}{3}$; <i>y</i> -intercept: (0, -4)			
	$4y = -3x + 8$ $y = \frac{-3x + 8}{4}$	C. Slope: $-\frac{2}{3}$; y-intercept: (0, 4)			
	$y = -\frac{3}{4}x + 2$	D. Slope: -4 ; y-intercept: $\left(0, \frac{2}{3}\right)$			
	The slope is $-\frac{3}{4}$, and the <i>y</i> -intercept is $(0, 2)$.				

Objective [2.4b] Given two points of a line, find the slope; given a linear equation, derive the equivalent slope-intercept equation and determine the slope and the y-intercept.

Objective [2.4	4c	Find	the slop	be or	rate	of	change	in a	in applied	problem	involving	slope.
· ·							0			T	0	-

Brief Procedure	Example	Practice Exercise
Determine the rise and run, or the change in y and the change in x , and compute the slope, or rate of change.	A road rises 40 m over a horizontal distance of 1250 m. Find the grade of the road. Slope = $\frac{\text{rise}}{\text{run}}$ = $\frac{40}{1250}$ = 0.032 = 3.2%	 14. A set of stairs rises 12 ft over a horizontal distance of 150 ft. Find the grade of the stairs. A. 8% B. 12% C. 12.5% D. 15%

Objective [2.5b] Given a linear equation in slope-intercept form, use the slope and the y-intercept to graph the line.

Brief Procedure	Example	Practice Exercise
First plot the <i>y</i> -intercept. Then move up or down and left or right according to the slope to find another point. Move again from this point or from the <i>y</i> -intercept to find a third point. Then draw the line.	Graph $y = -\frac{1}{2}x + 1$ using the slope and y-intercept. First we plot the y-intercept (0, 1). Then we think of the slope as $\frac{-1}{2}$. Starting at (0, 1), we find another point by moving 1 unit down (since the numerator is negative and cor- responds to the change in y) and 2 units to the right (since the denom- inator is positive and corresponds to the change in x). We get to the point (2, 0). Now, from (2, 0), move 1 unit down and 2 units to the right again, arriving at the point (4, -1). (Alter- natively, we could have returned to the y-intercept, considered the slope as $\frac{1}{-2}$, and moved 1 unit up and 2 units to the left to find a third point.) We draw the line through the three points we found.	16. Graph $y = \frac{2}{3}x - 3$ using the slope and y-intercept. A. B. C. C. A. A. A. A. A. A. A. A
		D. y

Objective [2.5c] Graph linear equations of the form $x = a$ or $y = b$.				
Brief Procedure	Example	Practice Exercises		
The graph of $x = a$ is a vertical line.	Graph $x = 2$. We can think of this equation as $x + 0 \cdot y = 2$. No matter what number we choose for y , x must be 2. We make a table of values and plot and connect the corresponding points. $\frac{x \mid y}{2 \mid -4}$ $2 \mid 0$ $2 \mid 3$	17. Graph $x = -3$. A. A. y -5 - 4 - 3 - 2 - 10 B. y -5 - 4 - 3 - 2 - 10 -5 - 5 - 4 - 3 - 2 - 10 -5 - 5 - 4 - 3 - 2		
		C. y -5 - 4 - 3 - 2 - 10 y -5 - 4 - 3 - 2 - 10 y -5 - 4 - 3 - 2 - 10 y -5 - 4 - 3 - 2 - 10 x -5 - 4 - 3 - 2 - 10 x -5 -4 -5 -4 -5 -4 -5		

Objective [2.5c] (continued)		
Brief Procedure	Example	Practice Exercises
The graph of $y = b$ is a horizontal line.	Graph $y = -4$. We can think of this equation as $0 \cdot x + y = -4$. No matter what number we choose for x, y must be -4. We make a table of values and plot and connect the corresponding points. $\frac{x \mid y}{-2 \mid -4}$	18. Graph $y = 1$. A. -5 -4 -3 -2 -10 1 2 3 4 5 -5 -4 -3 -2 -10 1 2 3 4 5 -5 -4 -3 -2 -10 -1 2 -3 -10 -1 2 -3 -10 -1 2 -3 -10 -1 2 -3 -10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B.
		D. y $-5 \cdot 4 \cdot 3 \cdot 2 \cdot 10$ 1 2 3 4 5 -2 -3 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -2 -2 -3 -4 -5

they are perpendicular.				
Brief Procedure	Example	Practice Exercises		
Parallel nonvertical lines have the same slope and dif- ferent y -intercepts.	Determine whether the graphs of the lines $y = -2x + 1$ and $4x + 2y = 5$ are parallel.	19. Determine whether the graphs of the lines $x+y = 3$ and $x-y = 3$ are parallel.		
Parallel vertical lines have equations $x = p$ and $x = q$, where $p \neq q$.	The first equation is in slope-intercept form $(y = mx + b)$, so we see that it has slope -2 and y-intercept (0,1). We solve the second equation for y. 4x + 2y = 5 2y = -4x + 5 $y = \frac{1}{2}(-4x + 5)$ $y = -2x + \frac{5}{2}$ Thus, the slope of the second line is -2 and its y-intercept is $\left(0, \frac{5}{2}\right)$. Since the two lines have the same	A. Yes B. No		
	$(0,1)$ and $\left(0,\frac{5}{2}\right)$, they are parallel.			
Two nonvertical lines are perpendicular if the product of their slopes is -1 .	Determine whether the graphs of the lines $2x + y = 4$ and $x + 2y = 3$ are perpendicular.	20. Determine whether the graphs of the lines $3x - 2y = 4$ and 4x + 6y = 3 are perpendicular.		
If one line in a pair of per- pendicular lines is vertical, then the other is horizontal. That is, two lines with equa- tions $x = a$ and $y = b$ are perpendicular.	We first solve each equation for y in order to determine the slopes. a) $2x + y = 4$ y = -2x + 4 b) $x + 2y = 3$ 2y = -x + 3 $y = \frac{1}{2}(-x + 3)$	A. Yes B. No		
	$y = -\frac{1}{2}x + \frac{3}{2}$ The slopes are -2 and $-\frac{1}{2}$. The prod- uct of the slopes is $-2\left(-\frac{1}{2}\right) = 1$. Since the product of the slopes is not -1, the lines are not perpendicular.			

Objective [2.5d] Given the equations of two lines, determine whether their graphs are parallel or whether they are perpendicular.

Objective $[2.6a]$ Find an equation of a line when the slope and the <i>y</i> -intercept are given.				
Brief Procedure	Example	Practice Exercise		
When the slope m and the y - intercept $(0,b)$ of a line are given, find an equation of the line by substituting in the equation $y = mx + b$.	A line has slope -3 and y-intercept (0,2). Find an equation of the line. We substitute -3 for m and 2 for b in the slope-intercept equation. y = mx + b y = -3x + 2	 21. A line has slope 4 and y-intercept (0, -1). Find an equation of the line. A. y = -x + 4 B. y = -x - 4 C. y = 4x - 1 D. y = 4x + 1 		
Objective [2.6b] Find an equa	tion of a line when the slope and a point	are given.		
Brief Procedure	Example	Practice Exercise		
Substitute the given slope for m in the slope-intercept equation $y = mx+b$ and then substitute the coordinates of the given point to find b .	Find an equation of the line with slope -2 that contains the point (3, -1). We know that the slope is -2, so the equation is $y = -2x + b$. Using the point $(3, -1)$, we substitute 3 for x and -1 for y in $y = -2x + b$. y = -2x + b $-1 = -2 \cdot 3 + b$ -1 = -6 + b 5 = b Then the equation is $y = -2x + 5$.	 22. Find an equation of the line with slope 4 that contains the point (-2, -5). A. y = 4x - 5 B. y = 4x + 18 C. y = 4x - 2 D. y = 4x + 3 		
Objective [2.6c] Find an equat	ion of a line when two points on the line	e are given.		
Brief Procedure	Example	Practice Exercise		
Use the two given points to find the slope of the line. Next, substitute the slope for m in the slope-intercept equation $y = mx+b$ and then substitute the coordinates of either of the given points to find b .	Find an equation of the line contain- ing the points (4,3) and (-2,5). First, we find the slope. $m = \frac{3-5}{4-(-2)} = \frac{-2}{6} = -\frac{1}{3}$ Thus, $y = -\frac{1}{3}x + b$. Now use either of the given points to find b. We use (4,3) and substitute 4 for x and 3 for y. $y = -\frac{1}{3}x + b$ $3 = -\frac{1}{3} \cdot 4 + b$ $3 = -\frac{1}{3} \cdot 4 + b$ $\frac{13}{3} = b$ Then the equation of the line is $y = -\frac{1}{3}x + \frac{13}{3}.$	 23. Find an equation of the line containing (-3, -2) and (3,4). A. y = x + 1 B. y = x - 7 C. y = -x + 1 D. y = -x - 7 		

Copyright \bigodot 1999 Addison Wesley Longman

Objective [2.6d] Given a line and a point not on the given line, find an equation of the line parallel to the line and containing the point, and find an equation of the line perpendicular to the line and containing the point.				
Brief Procedure	Example	Practice Exercises		
A given line and a line paral- lel to it have the same slope. Once the slope is determined, substitute the slope for m and the coordinates of the given point for x and y in the slope-intercept equation to find b .	Find an equation of the line contain- ing the point $(-2, 4)$ and parallel to the line $3x + y = 4$. To find the slope of the given line, we first find the slope-intercept equation by solving for y. 3x + y = 4 y = -3x + 4 Thus, the new line through $(-2, 4)$ must have slope -3 . Now we substi- tute -3 for m , -2 for x , and 4 for y in $y = mx + b$ and solve for b . y = mx + b 4 = -3(-2) + b 4 = 6 + b -2 = b Finally, we substitute -3 for m and -2 for b in $y = mx + b$ to find the desired equation: y = -3x - 2.	24. Find an equation of the line containing the point $(1, -3)$ and parallel to the line 4x - 2y = 5. A. $y = 2x - 5$ B. $y = -2x - 1$ C. $y = 4x - 7$ D. $y = x - 4$		
Given a line, the slope of a line perpendicular to it is the opposite of the reciprocal of the slope of the given line. Find the slope of the new line and then substitute the slope for m and the coordinates of the given point for x and y in the slope-intercept equation to find b .	Find an equation of the line contain- ing $(2, -3)$ and perpendicular to the line $x - 2y = 6$. First we find the slope of the given line by solving for y to obtain the slope-intercept equation. x - 2y = 6 -2y = -x + 6 $y = \frac{1}{2}x - 3$ The slope of the new line through (2, -3) is the opposite of the recip- rocal of $\frac{1}{2}$, or -2 . Now we substitute -2 for m , 2 for x , and -3 for y in y = mx + b $-3 = -2 \cdot 2 + b$ -3 = -4 + b 1 = b Finally, we substitute -2 for m and 1 for b in $y = mx + b$ to find the desired equation: y = -2x + 1.	25. Find an equation of the line containing the point $(-4, 1)$ and perpendicular to the line 3x + 6y = 5. A. $y = -\frac{1}{2}x - 1$ B. $y = -2x + 1$ C. $y = 2x + 9$ D. $y = \frac{1}{2}x + 3$		

Objective [2.6e] Solve applied problems involving linear functions.				
Brief Procedure	Example	Practice Exercise		
Write a linear function that models the situation and use the model to find the desired function values.	 Riggins County Cable charges a \$40 installation fee and \$25 per month for basic service. a) Formulate a linear function C(t) for the cost of t months of cable service. b) Use the model to determine the cost for 9 months of service. a) For t months of service the cost is \$40 for installation plus \$25 per month times the number of months. Thus, we have C(t) = 40 + 25t, where t ≥ 0. b) To find the cost for 9 months of service is \$265. 	 26. Dorsey plumbing charges \$45 for a service call plus \$40 per hour. Formulate a linear func- tion C(t) for the cost of t hours of service and use the function to find the cost of a 1¹/₂ hour service call. A. \$85 B. \$105 C. \$135 D. \$145 		

Objective [2.7a] Using a set of data, draw a representative graph of a linear function and make predictions from the graph.

Brief Procedure	Example		Practice	Exercise	
Brief Procedure Use the data to determine ordered pairs. Then graph these pairs, obtaining a scat- terplot, and determine if it appears that a straight line can be used to approximate the data. If so, draw a rep- resentative line and use the line to estimate data values that go beyond the given val- ues. This process is called extrapolation.	ExampleExampleThe following table gives the net s of Simmons Merchandise. $Vears, x$ (since 1995)Net Sales, S (in millions)0. 1995\$2.01. 1996\$2.42. 1997\$2.73. 1998\$3.2a) Make a scatterplot of the data, then draw a representative group of a linear function	ales	Practice Exercise27. The following table s the relationship betw time and test scores.Study Time (in hours)Study Time (in hours)89898108118Make a scatterplot o and then draw a row	Exercise table shows ip between stud scores. Test Score (in percent) 80 82 82 84 85 rplot of the dat	study e t) data, tative . Use
	 then draw a representative graph of a linear function. b) Use the graph to predict net sales in 2000. a) To make a scatterplot we graph the data points (0, 2.0), (1, 2.4), (2, 2.7), and (3, 3.2). It appears that a straight line might fit the data, so we draw a representative line through the data and beyond it. (continued) Make a scatterplot of and then draw a representative graph of a linear function. Make a scatterplot of and then draw a representative graph of a linear function. A. About 87 B. About 90 C. About 91 D. About 95 		v a representative ear function. Us predict the teal lent studies for 1	ve se st 12	

Objective [2.7a] (continued)				
Brief Procedure	Example	Practice Exercise		
	Nears since 1995			
	b) The year 2000 is 5 years after 1995. To predict the net sales in 2000 we draw a vertical line up from 5 on the x-axis to the line and then move to the left to read a value from the S-axis. We predict that sales in 2000 will be about \$3.9 million. $S_{\frac{5}{2}}$			
Objective [2.7b] Using a set of and make pre-	data, choose two representative points, edictions from the function.	find a linear function using the two points,		
Brief Procedure	Example	Practice Exercise		
Choose two data points and use them to find a linear func- tion using the method in Sec- tion 2.6. Then make predic- tions by finding the appropri- ate function values.	The following table gives the net sales of Simmons Merchandise. Years, x Net Sales, S (since 1995) (in millions) 0. 1995 \$2.0 1. 1996 \$2.4 2. 1997 \$2.7 3. 1998 \$3.2 a) Use the points (0, 2.0) and (2, 2.7) to find a linear function $S(x)$ that fits the data. b) Use the function to predict the net sales in 2000. a) First we find the slope of the line. $m = \frac{2.7 - 2.0}{2 - 0} = \frac{0.7}{2} = 0.35$ (continued)	 28. The following table shows the relationship between study time and test scores. Study Time Test Score (in hours) (in percent) 8 80 9 82 10 84 11 85 Use the points (8, 80) and (10, 84) to find a linear func- tion that fits the data. Then use the function to predict the test score if a student studies for 14 hr. A. 88 B. 90 C. 92 D. 94 		

Objective [2.7b] (continued)		
Brief Procedure	Example	Practice Exercise
	Now use the slope and either point to find b. We use $(0, 2.0)$ and sub- stitute 0.35 for $m, 0$ for x , and 2.0 for y in $y = mx + b$. y = mx + b 2.0 = 0.35(0) + b 2.0 = b Now substitute $S(x)$ for $y, 0.35$ for m, and 2.0 for b in $y = mx + b$ to find the desired function. S(x) = 0.35x + 2.0	
	b) The year 2000 is 5 years after 1995, so we find $S(5)$.	
	S(5) = 0.35(5) + 2.0 = 3.75 Sales in 2000 will be \$3.75 million.	